Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 53(21): 12467-12475, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31600435

ABSTRACT

Ozone is an important oxidant in the environment. To study the nature of multiphase ozonolysis, an unsaturated triglyceride, triolein, of the type present in skin oil, biological membranes, and most cooking oils was oxidized by gas-phase ozone on a surface. A high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) method was developed for analyzing triolein and its oxidized products. Upon exposure to ozone, the decay of thin coatings of triolein was observed, accompanied by the formation of functionalized condensed-phase products including secondary ozonides (SOZ), acids, and aldehydes. By studying the reaction kinetics as a function of average coating thickness and ozone mixing ratio, we determined that the reactive uptake coefficient (γ) is on the order of 10-6 to 10-5. It is also concluded that the reaction occurs in the bulk without a major interfacial component, and the reacto-diffusive depth of ozone in the triolein coating is estimated to be between 8 and 40 nm. The specific nature of the reaction products is affected by the reactions of the Criegee intermediate formed during ozonolysis. In particular, although an increase in the relative humidity to 50% from dry conditions has no effect on the kinetics of triolein decay, the yield of SOZs is significantly depressed, indicating reactions of the Criegee intermediates to form hydroperoxides. Once formed, the SOZ products are thermally stable over periods of at least 48 h at room temperature but decomposition was observed under simulated outdoor sunlight, likely forming organic acids. From an environmental perspective, this chemistry indicates that SOZs and other oxygenates will form via ozonolysis of oily indoor surfaces and skin oil.


Subject(s)
Ozone , Kinetics , Mass Spectrometry , Oxidation-Reduction , Triglycerides
2.
Environ Sci Technol ; 53(18): 10695-10704, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31418552

ABSTRACT

Sulfur oxides (SOx) are important atmospheric trace species in both gas and particulate phases, and sulfate is a major component of atmospheric aerosol. One potentially important source of particulate sulfate formation is the oxidation of dissolved SO2 by organic peroxides, which comprises a major fraction of secondary organic aerosol (SOA). In this study, we investigated the reaction kinetics and mechanisms between SO2 and condensed-phase peroxides. pH-dependent aqueous phase reaction rate constants between S(IV) and organic peroxide standards were measured. Highly oxygenated organic peroxides with O/C > 0.6 in α-pinene SOA react rapidly with S(IV) species in the aqueous phase. The reactions between organic peroxides and S(IV) yield both inorganic sulfate and organosulfates (OS), as observed by electrospray ionization ion mobility mass spectrometry. For the first time, 34S-labeling experiments in this study revealed that dissolved SO2 forms OS via direct reactions without forming inorganic sulfate as a reactive intermediate. Kinetics of OS formation was estimated semiquantitatively, and such reaction was found to account for 30-60% of sulfur reacted. The photochemical box model GAMMA was applied to assess the implications of the measured SO2 consumption and OS formation rates. Our findings indicate that this novel pathway of SO2-peroxide reaction is important for sulfate formation in submicron aerosol.


Subject(s)
Air Pollutants , Sulfur Dioxide , Aerosols , Oxidation-Reduction , Peroxides , Sulfates
3.
Proc Natl Acad Sci U S A ; 116(24): 11658-11663, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31142653

ABSTRACT

Benzo[a]pyrene (BaP), a key polycyclic aromatic hydrocarbon (PAH) often associated with soot particles coated by organic compounds, is a known carcinogen and mutagen. When mixed with organics, the kinetics and mechanisms of chemical transformations of BaP by ozone in indoor and outdoor environments are still not fully elucidated. Using direct analysis in real-time mass spectrometry (DART-MS), kinetics studies of the ozonolysis of BaP in thin films exhibited fast initial loss of BaP followed by a slower decay at long exposure times. Kinetic multilayer modeling demonstrates that the slow decay of BaP over long times can be simulated if there is slow diffusion of BaP from the film interior to the surface, resolving long-standing unresolved observations of incomplete PAH decay upon prolonged ozone exposure. Phase separation drives the slow diffusion time scales in multicomponent systems. Specifically, thermodynamic modeling predicts that BaP phase separates from secondary organic aerosol material so that the BaP-rich layer at the surface shields the inner BaP from ozone. Also, BaP is miscible with organic oils such as squalane, linoleic acid, and cooking oil, but its oxidation products are virtually immiscible, resulting in the formation of a viscous surface crust that hinders diffusion of BaP from the film interior to the surface. These findings imply that phase separation and slow diffusion significantly prolong the chemical lifetime of PAHs, affecting long-range transport of PAHs in the atmosphere and their fates in indoor environments.

4.
Environ Sci Process Impacts ; 21(8): 1334-1341, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-30976776

ABSTRACT

The sources and sinks of isocyanic acid (HNCO), a toxic gas, in indoor environments are largely uncharacterized. In particular, cigarette smoke has been identified as a significant source. In this study, controlled smoking of tobacco cigarettes was investigated in both an environmental chamber and a residence in Toronto, Canada using an acetate-CIMS. The HNCO emission ratio from side-stream cigarette smoke was determined to be 2.7 (±1.1) × 10-3 ppb HNCO/ppb CO. Side-stream smoke from a single cigarette introduced a large pulse of HNCO to the indoor environment, increasing the HNCO mixing ratio by up to a factor of ten from background conditions of 0.15 ppb. Although there was no evidence for photochemical production of HNCO from cigarette smoke in the residence, it was observed in the environmental chamber via oxidation by the hydroxyl radical (1.1 × 107 molecules per cm3), approximately doubling the HNCO mixing ratio after 30 minutes of oxidation. Oxidation of cigarette smoke by O3 (15 ppb = 4.0 × 1017 molecules per cm3) and photo-reaction with indoor fluorescent lights did not produce HNCO. By studying the temporal profiles of both HNCO and CO after smoking, it is inferred that gas-to-surface partitioning of HNCO acts as an indoor loss pathway. Even in the absence of smoking, the indoor HNCO mixing ratios in the Toronto residence were elevated compared to concurrent outdoor measurements by approximately a factor of two.


Subject(s)
Air Pollution, Indoor/analysis , Cyanates/analysis , Housing/standards , Nicotiana/chemistry , Smoking , Tobacco Smoke Pollution/analysis , Canada , Humans , Hydroxyl Radical/analysis , Oxidation-Reduction
5.
Environ Sci Technol ; 53(3): 1217-1224, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30387352

ABSTRACT

Washing with chlorine bleach leads to high mixing ratios of gas-phase HOCl. Using two methods that are sensitive to surface film composition-attenuated total reflection fourier transform infrared (ATR-FTIR) spectroscopy and direct analysis in real time mass spectrometry (DART-MS)-we present the first study of the chlorination chemistry that occurs when gaseous HOCl reacts with thin films of squalene and oleic acid. At mixing ratios of 600 ppbv, HOCl forms chlorohydrins by adding across carbon-carbon double bonds without breaking the carbon backbone. The initial uptake of one HOCl molecule occurs on the time scale of a few minutes at these mixing ratios. For oleic acid, ester formation proceeds immediately thereafter, leading to dimeric and trimeric chlorinated products. For squalene, subsequent HOCl uptake occurs until all six of its carbon-carbon double bonds become chlorinated within 1-2 h. These results indicate that chlorination of skin oil, which contains substantial carbon unsaturation, is likely to occur rapidly under common cleaning conditions, potentially leading to the irritation associated with chlorinated bleach. This chemistry will likely also proceed with cooking oils, in the human respiratory system which has unsaturated surfactants as important components of lung fluid, and with organic components of the sea surface microlayer.


Subject(s)
Chlorohydrins , Oleic Acid , Halogenation , Humans , Hypochlorous Acid , Squalene
6.
Environ Sci Technol ; 52(21): 12419-12427, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30346749

ABSTRACT

Nitrous acid (HONO) is an important component of indoor air as a photolabile precursor to hydroxyl radicals and has direct health effects. HONO concentrations are typically higher indoors than outdoors, although indoor concentrations have proved challenging to predict using box models. In this study, time-resolved measurements of HONO and NO2 in a residence showed that [HONO] varied relatively weakly over contiguous periods of hours, while [NO2] fluctuated in association with changes in outdoor [NO2]. Perturbation experiments were performed in which indoor HONO was depleted or elevated and were interpreted using a two-compartment box model. To reproduce the measurements, [HONO] had to be predicted using persistent source and sink processes that do not directly involve NO2, suggesting that HONO was in equilibrium with indoor surfaces. Production of gas phase HONO directly from conversion of NO2 on surfaces had a weak influence on indoor [HONO] during the time of the perturbations. Highly similar temporal responses of HONO and semivolatile carboxylic acids to ventilation of the residence along with the detection of nitrite on indoor surfaces support the concept that indoor HONO mixing ratios are controlled strongly by gas-surface equilibrium.


Subject(s)
Air Pollution, Indoor , Nitrous Acid , Housing , Nitrites , Ventilation
7.
Environ Sci Process Impacts ; 19(10): 1292-1299, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28848957

ABSTRACT

The formation of two classes of epoxide products from the heterogeneous reaction of benzo[a]pyrene (BaP) with gas-phase ozone was demonstrated. BaP was coated on a Pyrex glass tube and oxidized with different concentrations of ozone. After oxidation, the epoxide products were derivatized by N-acetylcystein (NAC) and then analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results show that in addition to mono-epoxides, diol-epoxides were also formed. BaP exposed to genuine indoor air also produces mono- and diol-epoxides, having similar chromatograms to those produced by oxidation of BaP by low concentrations of ozone. Although it is well recognized that diol-epoxides are formed from BaP oxidation in the human body and that they exhibit carcinogenicity via formation of adducts with DNA, this is the first demonstration that such classes of compounds can be formed by abiotic heterogeneous oxidation.


Subject(s)
Air Pollution, Indoor/analysis , Benzo(a)pyrene/chemistry , Epoxy Compounds/analysis , Models, Theoretical , Ozone/chemistry , Animals , Chromatography, High Pressure Liquid , DNA Adducts/analysis , Humans , Molecular Structure , Oxidation-Reduction , Tandem Mass Spectrometry
8.
Environ Sci Technol ; 50(21): 11688-11697, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27668450

ABSTRACT

Motivated by the importance of the heterogeneous chemistry of squalene contained within skin oil to indoor air chemistry, the surface reaction of squalene with gas-phase ozone has been investigated. Using direct analysis in real time mass spectrometry (DART-MS) to monitor squalene, the reactive uptake coefficients were determined to be (4.3 ± 2.2) × 10-4 and (4.0 ± 2.2) × 10-4 for ozone mixing ratios (MRO3) of 50 and 25 ppb, respectively, on squalene films deposited on glass surfaces. At an MRO3 of 25 ppb, the lifetime for oxidation was the same as that in an indoor office with an MRO3 between 22 and 32 ppb, suggesting that O3 was the dominant oxidant in this indoor setting. While the heterogeneous kinetics of squalene and O3 were independent of relative humidity (RH), the RH significantly affected the reaction products. Under dry conditions (<5% RH), in addition to several products between m/z 300 and 350, the major condensed-phase end products were levulinic acid (LLA) and succinic acid (SCA). Under humid conditions (50% RH), the major end products were 4-oxopentanal, 4-oxobutanoic acid, and LLA. The molar yields of LLA and SCA were quantified as 230 ± 43% and 110 ± 31%, respectively, under dry conditions and 91 ± 15% and <5%, respectively, at 50% RH. Moreover, high-molecular weight (molecular weight of >450 Da) products were observed under dry conditions with indications that LLA was involved in their formation. The mechanism of squalene oxidation is discussed in light of these observations, with indications of an important role played by Criegee intermediates.


Subject(s)
Ozone/chemistry , Squalene/chemistry , Air Pollution, Indoor , Kinetics , Oxidation-Reduction
9.
Phys Chem Chem Phys ; 18(1): 205-12, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26603953

ABSTRACT

In the 1980s long-lived radical species were identified in cigarette tar. Since then, environmentally persistent free radicals (EPFRs) have been observed in ambient particulate matter, and have been generated in particulate matter generated from internal combustion engines. For the first time, we measure in situ the formation and decay of EPFRs through the heterogeneous reaction of ozone and several polycyclic aromatic compounds (PAC). Solid anthracene (ANT), pyrene (PY), benzo[a]pyrene (BAP), benzo[ghi]perylene (BGHIP), 1,4-naphthoquinone (1,4NQ), and 9,10-anthraquinone (AQ) were reacted with gas-phase ozone in a flow system placed in the active cavity of an electron paramagnetic resonance (EPR) spectrometer, and the formation of radicals was measured on the timescale of tens of minutes at ambient levels of ozone down to 30 ppb. For most substrates the net radical production is initially rapid, slows at intermediate times, and is followed by a slow decay. For oxidized solid BAP, radical signal persists for many days in the absence of ozone. To evaluate the effect of substrate phase, the solid PAHs were also dissolved in squalane, an organic oil inert to ozone, which yielded a much higher maximum radical concentration and faster radical decay when exposed to ozone. With higher mobility, reactants were apparently able to more easily diffuse and react with each other, yielding the higher radical concentrations. The EPR spectra exhibit three radicals types, two of which have been assigned to semiquinone species and one to a PAH-derived, carbon-centered radical. Although our system uses levels of PAC not typically found in the environment it is worth noting that the amounts of radical formed, on the order of 10(18) radicals per g, are comparable to those observed in ambient particulate matter.

10.
Anal Chem ; 87(9): 4733-40, 2015.
Article in English | MEDLINE | ID: mdl-25843110

ABSTRACT

A novel analytical method is presented whereby Direct Analysis in Real Time-Mass Spectrometry (DART-MS) is applied to the study of gas-surface heterogeneous reactions. To illustrate the capabilities of the approach, the kinetics of a well-studied reaction of surface-bound polycyclic aromatic hydrocarbons with ozone are presented. Specifically, using helium as the reagent gas and with the DART heater temperature of 500 °C, nanogram quantities of benzo[e]pyrene (BeP) deposited on the outside of glass melting point capillary tubes were analyzed in positive ion mode with a limit of detection of 40 pg. Using bis(2-ethylhexyl) sebacate as an internal standard, the kinetics of the ozone-BeP reaction were assessed by determining the surface-bound BeP decays, after oxidation in an off-line reaction cell. The reaction is demonstrated to follow the Langmuir-Hinshelwood mechanism, known to prevail for heterogeneous reactions of this type. In addition, a wide array of oxygenated, condensed-phase products has been observed. The present work demonstrates the capability of the DART-MS technique to investigate the heterogeneous chemistry taking place on a wide range of surfaces, such as those that form in both outdoor and indoor environments.


Subject(s)
Mass Spectrometry , Ozone/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Gases/analysis , Kinetics , Mass Spectrometry/instrumentation , Surface Properties , Temperature , Time Factors
11.
Nat Commun ; 6: 6812, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25873384

ABSTRACT

Although it is known that soot particles are emitted in large quantities to the atmosphere, our understanding of their environmental effects is limited by our knowledge of how their composition is subsequently altered through atmospheric processing. Here we present an on-line mass spectrometric study of the changing chemical composition of hydrocarbon soot particles as they are oxidized by gas-phase ozone, and we show that the surface-mediated loss rates of adsorbed polycyclic aromatic hydrocarbons in soot are directly connected to a significant increase in the particle redox cycling abilities. With redox cycling implicated as an oxidative stress mechanism that arises after inhalation of atmospheric particles, this work draws a quantitative connection between the detailed heterogeneous chemistry occurring on atmospheric particles and a potential toxic mechanism attributable to that aerosol.

12.
J Phys Chem A ; 119(19): 4309-16, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25196234

ABSTRACT

This study is focused on the relative humidity (RH) dependence of water-soluble secondary organic aerosol (SOA) aging by photolysis. Particles containing α-pinene SOA and ammonium sulfate, generated by atomization, were exposed to UV radiation in an environmental chamber at three RH conditions (5, 45, and 85%), and changes in chemical composition and mass were monitored using an aerosol mass spectrometer (AMS). Under all RH conditions, photolysis leads to substantial loss of SOA mass, where the rate of mass loss decreased with decreasing RH. For all RH conditions, the less oxidized components of SOA (e.g., carbonyls) exhibited the fastest photodegradation rates, which resulted in a more oxidized SOA after photolytic aging. The photolytic reactivity of SOA material exhibited a dependence on RH likely due to moisture-induced changes in SOA morphology or phase. The results suggest that the atmospheric lifetime of SOA with respect to photolysis is dependent on its RH cycle, and that photolysis may be an important sink for some SOA components occurring on an initial time scale of a few hours under ambient conditions.

13.
Faraday Discuss ; 165: 391-406, 2013.
Article in English | MEDLINE | ID: mdl-24601014

ABSTRACT

The potential for aerosol physical properties, such as phase, morphology and viscosity/ diffusivity, to affect particle reactivity remains highly uncertain. We report here a study of the effect of bulk diffusivity of polycyclic aromatic hydrocarbons (PAHs) in secondary organic aerosol (SOA) on the kinetics of the heterogeneous reaction of particle-borne benzo[a]pyrene (BaP) with ozone. The experiments were performed by coating BaP-ammonium sulfate particles with multilayers of SOA formed from ozonolysis of alpha-pinene, and by subsequently investigating the kinetics of BaP loss via reaction with excess ozone using an aerosol flow tube coupled to an Aerodyne Aerosol Mass Spectrometer (AMS). All reactions exhibit pseudo-first order kinetics and are empirically well described by a Langmuir-Hinshelwood (L-H) mechanism. The results show that under dry conditions (RH < 5%) diffusion through the SOA coating can lead to significant mass transfer constraints on the kinetics, with behavior between that previously observed by our group for solid and liquid organic coats. The reactivity of BaP was enhanced at -50% relative humidity (RH) suggesting that water uptake lowers the viscosity of the SOA, hence lifting the mass transfer constraint to some degree. The kinetics for -70% RH were similar to results obtained without SOA coats, indicating that the SOA had sufficiently low viscosity and was sufficiently liquid-like that reactants could rapidly diffuse through the coat. A kinetic multi-layer model for aerosol surface and bulk chemistry was applied to simulate the kinetics, yielding estimates for the diffusion coefficients (in cm2 s(-1)) for BaP in alpha-pinene SOA of 2 x 10(-14), 8 x 10(-14) and > 1 x 10(-12) for dry (RH < 5%), 50% RH and 70% RH conditions, respectively. These results clearly indicate that slow diffusion of reactants through SOA coats under specific conditions can provide shielding from gas-phase oxidants, enabling the long-range atmospheric transport of toxic trace species, such as PAHs and persistent organic pollutants.

14.
J Phys Chem A ; 116(35): 8885-92, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-22897604

ABSTRACT

Using a relative rate technique, kinetic studies on the gas-phase reactions of OH radicals, ozone, and NO(3) radicals with iso-butyl vinyl ether (iBVE) and tert-butyl vinyl ether (tBVE) have been performed in a 405 L Duran glass chamber at (298 ± 3) K and atmospheric pressure (750 ± 10 Torr) in synthetic air using in situ FTIR spectroscopy to monitor the reactants. The following rate coefficients (in units of cm(3) molecule(-1) s(-1)) have been obtained: (1.08 ± 0.23) × 10(-10) and (1.25 ± 0.32) × 10(-10) for the reactions of OH with iBVE and tBVE, respectively; (2.85 ± 0.62) × 10(-16) and (5.30 ± 1.07) × 10(-16) for the ozonolysis of iBVE and tBVE, respectively; and (1.99 ± 0.56) × 10(-12) and (4.81 ± 1.01) × 10(-12) for the reactions of NO(3) with iBVE and tBVE, respectively. The rate coefficients for the NO(3) reactions are first-time determinations. The measured rate coefficients are compared with estimates using current structure activity relationship (SAR) methods and the effects of the alkoxy group on the gas-phase reactivity of the alkyl vinyl ethers toward the oxidants are compared and discussed. In addition, estimates of the tropospheric lifetimes of iBVE and tBVE with respect to their reactions with OH, ozone, and NO(3) for typical OH radical, ozone, and NO(3) radical concentrations are made, and their relevance for the environmental fate of compounds is considered.

15.
Environ Sci Technol ; 45(6): 2131-6, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21341691

ABSTRACT

The effect of oxidation on the redox-cycling activity of engine exhaust particles is examined. Particles obtained from a two-stroke gasoline engine were oxidized in a flow tube with ozone on a one-minute time scale both in the presence and absence of substantial gas-phase exhaust components. Whereas ozone concentrations were high, the ozone exposures were approximately equivalent to 60 ppb ozone for 2-8 h. Oxidation led to substantial increases in redox-cycling of aqueous extracts of filtered particles, as measured using the dithiothreitol (DTT) assay. Increases in redox activity when the entire exhaust was oxidized were primarily driven by deposition of redox-active secondary organic aerosol (SOA), resulting in an upper-limit DTT activity of 8.6 ± 2.0 pmol DTT consumed per min per microgram of particles, compared to 0.73 ± 0.60 pmol min(-1) µg(-1) for fresh, unoxidized exhaust particles. Redox-cycling activity reached higher levels when VOC denuded exhaust was oxidized, with the highest DTT activity observed being 16.7 ± 1.6 pmol min(-1) µg(-1) with no upper limit reached for the range of ozone exposures used in this study. Our results provide laboratory support for the hypothesis that the toxicity of engine combustion particles due to redox-cycling may increase as they age in the atmosphere.


Subject(s)
Air Pollutants/chemistry , Ozone/chemistry , Particulate Matter/chemistry , Vehicle Emissions/analysis , Air Pollutants/analysis , Oxidation-Reduction , Particulate Matter/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry
16.
J Phys Chem A ; 113(5): 858-65, 2009 Feb 05.
Article in English | MEDLINE | ID: mdl-19175334

ABSTRACT

Kinetic studies have been performed on the reactions of OH and NO(3) radicals and ozone with three ethyleneglycol vinyl ethers (EGVEs), that is, ethyleneglycol monovinyl ether (EGMVE, HOCH(2)CH(2)OCH=CH(2)), ethyleneglycol divinyl ether (EGDVE, H(2)C=CHOCH(2)CH(2)OCH=CH(2)), and diethyleneglycol divinyl ether (DEGDVE, H(2)C=CHOCH(2)CH(2)OCH(2)CH(2)OCH=CH(2)). Using a relative rate technique, rate coefficients have been determined for the reactions in a 405 L borosilicate glass chamber at (298 +/- 3) K in one atmosphere of synthetic air using in situ FTIR spectroscopy to monitor the reactants. The following rate coefficients (in units of cm(3) molecule(-1) s(-1)) were obtained: (1.04 +/- 0.22) x 10(-10), (1.23 +/- 0.33) x 10(-10), and (1.42 +/- 0.30) x 10(-10) for the reaction of OH with EGMVE, EGDVE, and DEGDVE, respectively; (2.23 +/- 0.46) x 10(-12), (1.95 +/- 0.50) x 10(-12), and (6.14 +/- 1.38) x 10(-12) for the reaction of NO(3) with EGMVE, EGDVE, and DEGDVE, respectively; and (2.02 +/- 0.41) x 10(-16), (1.69 +/- 0.41) x 10(-16), and (2.70 +/- 0.56) x 10(-16) for ozonolysis of EGMVE, EGDVE, and DEGDVE, respectively. Using the kinetic rate data, tropospheric lifetimes for EGMVE, EGDVE, and DEGDVE with respect to their reactions with OH, NO(3), and ozone have been estimated for typical ambient air concentrations of these oxidants.

17.
Environ Sci Technol ; 42(21): 7905-10, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-19031879

ABSTRACT

A kinetic study on the reactions of the OH radical and ozone with acetylacetone (AcAc) has been performed in a 1080 L quartz glass reaction chamber using in situ FTIR spectroscopy analysis. Temperature dependent rate coefficients for the reaction of AcAc with the OH radical were determined over the temperature range 285-310 K using the relative kinetic method. The following Arrhenius expression was derived: k = 3.35 x 10(-12) exp((983 +/- 130)/T) cm3 molecule(-1) s(-1), where the indicated error is the two least-squares deviation. A rate coefficient (in units of cm3 molecule(-1) s(-1)) of (1.03 +/- 0.31) x 10(-18) has been obtained at (298 +/- 3) K for the reaction of ozone with AcAc. A product investigation on the gas-phase reaction of OH radical with AcAc was conducted in a 405 L borosilicate glass chamber using in situ FTIR spectroscopy to monitor reactants and products. Methylglyoxal, acetic acid, peroxy acetic nitrate (PAN) were positively identified as products with molar yields of (20.8 +/- 4.5)%, (16.9 +/- 3.4)%, and (2.0 +/- 0.5)%, respectively. From the residual infrared spectrum the main products are attributed to 2,3,4-pentantrione (CH3-CO-CO-CO-CH3) and its hydrated analogue pentan-2,3-dione-4-diol (CH3-CO-CO-C(OH)2-CH3). Based on the observed products, a simplified mechanism for the reaction of the OH radical with AcAc is proposed.


Subject(s)
Atmosphere/chemistry , Pentanones/chemistry , Gases/chemistry , Hydroxyl Radical/chemistry , Kinetics , Temperature
18.
Phys Chem Chem Phys ; 9(42): 5686-92, 2007 Nov 14.
Article in English | MEDLINE | ID: mdl-17960257

ABSTRACT

Methyl-2-nitrophenols can be emitted directly to the atmosphere or can be formed in situ via the oxidation of aromatic hydrocarbons. Nitrophenols possess phytotoxic properties and recent studies indicate their photooxidation is effective in producing secondary organic aerosols. Therefore, investigations on the major photooxidation pathways of these compounds with respect to assessing their environmental impacts and effects on human health are highly relevant. Presented here are determinations of the rate coefficients for the reactions of OH radicals with four methyl-2-nitrophenol isomers using a relative kinetic technique. The experiments were performed in a 1080 l photoreactor at (760 +/- 10) Torr total pressure of synthetic air at (296 +/- 3) K. The following rate coefficients (in units of cm(3) molecule(-1) s(-1)) have been obtained: 3-methyl-2-nitrophenol, (3.69 +/- 0.70) x 10(-12); 4-methyl-2-nitrophenol, (3.59 +/- 1.17) x 10(-12); 5-methyl-2-nitrophenol, (6.72 +/- 2.14) x 10(-12); 6-methyl-2-nitrophenol, (2.70 +/- 0.57) x 10(-12). Photolysis of the methyl-2-nitrophenols with the superactinic fluorescent lamps (320 < lambda < 480 nm, lambda(max) = 360 nm) used in the experiments was observed. Photolysis frequencies measured for the methyl-2-nitrophenols in the photoreactor have been determined and scaled to atmospheric conditions. The results suggest that photolysis rather than the reaction with OH radicals will be the dominant gas phase atmospheric loss process for methyl-2-nitrophenols.

19.
Environ Sci Technol ; 40(17): 5415-21, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16999119

ABSTRACT

A product study is reported on the gas-phase reactions of OH and NO3 radicals and ozone with propyl vinyl ether (PVE). The experiments were performed in a 405 L borosilicate glass chamber in synthetic air at 298 +/- 3 K using long path in situ FTIR spectroscopy for the analysis of the reactants and products. In the presence of NO(x) (NO + NO2) the main products for the OH-radical initiated oxidation of PVE were propylformate and formaldehyde with molar formation yields of 78.6 +/- 8.8% and 75.9 +/- 8.4%, respectively. In the absence of NO(x) propylformate and formaldehyde were formed with molar formation yields of 63.0 +/- 9.0% and 61.3 +/- 6.3%, respectively. In the reaction of NO3 radicals with PVE propylformate 52.7 +/- 5.9% and formaldehyde 55.0 +/- 6.3% were again observed as major products. The ozonolysis of PVE led to the production of propylformate, formaldehyde, hydroxyperoxymethyl formate (HPMF; HC(O)OCH2OOH), and CO with molar formation yields of 89.0 +/- 11.4%, 12.9 +/- 4.0%, 13.0 +/- 3.4%, and 10.9 +/- 2.6%, respectively. The formation yield of OH radicals in the ozonolysis of PVE was estimated to be 17 +/- 9%. Simple atmospheric degradation mechanisms are postulated to explain the formation of the observed products.


Subject(s)
Hydroxyl Radical/chemistry , Nitric Oxide/chemistry , Ozone/chemistry , Vinyl Compounds/chemistry , Atmosphere , Oxidation-Reduction , Photochemistry
20.
J Phys Chem A ; 110(23): 7386-92, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16759126

ABSTRACT

Kinetic studies on the gas-phase reactions of OH and NO3 radicals and ozone with ethyl vinyl ether (EVE), propyl vinyl ether (PVE) and butyl vinyl ether (BVE) have been performed in a 405 L borosilicate glass chamber at 298 +/- 3 K in synthetic air using in situ FTIR spectroscopy to monitor the reactants. Using a relative kinetic method rate coefficients (in units of cm3 molecule(-1) s(-1)) of (7.79 +/- 1.71) x 10(-11), (9.73 +/- 1.94) x 10(-11) and (1.13 +/- 0.31) x 10(-10) have been obtained for the reaction of OH with EVE, PVE and BVE, respectively, (1.40 +/- 0.35) x 10(-12), (1.85 +/- 0.53) x 10(-12) and (2.10 +/- 0.54) x 10(-12) for the reaction of NO3 with EVE, PVE and BVE, respectively, and (2.06 +/- 0.42) x 10(-16), (2.34 +/- 0.48) x 10(-16) and (2.59 +/- 0.52) x 10(-16) for the ozonolysis of EVE, PVE and BVE, respectively. Tropospheric lifetimes of EVE, PVE and BVE with respect to the reactions with reactive tropospheric species (OH, NO3 and O3) have been estimated for typical OH and NO3 radical and ozone concentrations.


Subject(s)
Ethers/chemistry , Ethyl Ethers/chemistry , Hydroxyl Radical/chemistry , Nitrogen Oxides/chemistry , Ozone/chemistry , Vinyl Compounds/chemistry , Air Pollutants/chemistry , Alkenes/chemistry , Butadienes/chemistry , Free Radicals/chemistry , Gases/chemistry , Hemiterpenes/chemistry , Kinetics , Pentanes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...