Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(18): 9651-9660, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38656101

ABSTRACT

In this paper, a carbon dot hydrogel composite (CDs-Hy) capable of efficiently removing Pb(II) was prepared by hydrogen bonding self-assembly in combination with carbon dots and a hydrogel. CDs-Hy was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS), and the effect of the adsorption conditions on the adsorption efficiency of CDs-Hy was studied. The results of the study showed that the incorporation of carbon dots, on the one hand, significantly increased the adsorption capacity of the material. On the other hand, it can increase the stability of hydrogels in aqueous solution. The possible adsorption mechanisms were further verified as ion exchange and coordination. CDs-Hy is a novel adsorbent material capable of removing Pb2+ efficiently, which can be reused several times with high stability.

2.
J Plant Physiol ; 293: 154167, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38215556

ABSTRACT

Extreme heat events prolong the reproductive period and threaten soybean yield, whereas the specific stage at which individual fruits growth is delayed, and yield/yield components at the node, region, and plant levels under short-term heat stress in the reproductive stage are elusive. In this study, heat treatments (40/30 °C) were applied at 0-6 days (HTF0-6), 6-12 days (HTF6-12), 12-18 days (HTF12-18), and 0-12 days (HTF0-12) after the plant's first flower opened, and a control treatment (32/22 °C) was performed. The influences of heat stress on fruit development and yield/yield components at the node, region, and plant levels were investigated. As a result, the growth of individual fruits at nodes was delayed by HTF0-6 and HTF0-12, which was primarily caused by the prolongation of flowering to pods with a length of 2 cm. Interestingly, there were no significant differences in yield between the control treatment and the various high-temperature stress treatments at the plant level. Further analysis of the regional yield of soybean showed that the yield in the bottom and top regions of plants played significant roles in compensating for yield loss in the middle region after HTF0-12. Moreover, the delayed growth of individual fruits in the middle region was negatively correlated with yield. Our results indicate that the prolongation of fruit development induced by HTF0-6 and HTF0-12 may adversely affect soybean yield. However, the spatial compensation of plants could help maintain soybean yield under various short-term high temperature stress treatments during the reproductive period, which should be considered when breeding for and selecting heat-tolerant varieties.


Subject(s)
Fruit , Glycine max , Temperature , Heat-Shock Response , Reproduction
3.
J Exp Bot ; 75(7): 1982-1996, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38124377

ABSTRACT

Drought-induced leaf senescence is associated with high sugar levels, which bears some resemblance to the syndrome of diabetes in humans; however, the underlying mechanisms of such 'plant diabetes' on carbon imbalance and the corresponding detoxification strategy are not well understood. Here, we investigated the regulatory mechanism of exogenous methylglyoxal (MG) on 'plant diabetes' in maize plants under drought stress applied via foliar spraying during the grain-filling stage. Exogenous MG delayed leaf senescence and promoted photoassimilation, thereby reducing the yield loss induced by drought by 14%. Transcriptome and metabolite analyses revealed that drought increased sugar accumulation in leaves through inhibition of sugar transporters that facilitate phloem loading. This led to disequilibrium of glycolysis and overaccumulation of endogenous MG. Application of exogenous MG up-regulated glycolytic flux and the glyoxalase system that catabolyses endogenous MG and glycation end-products, ultimately alleviating 'plant diabetes'. In addition, the expression of genes facilitating anabolism and catabolism of trehalose-6-phosphate was promoted and suppressed by drought, respectively, and exogenous MG reversed this effect, implying that trehalose-6-phosphate signaling in the mediation of 'plant diabetes'. Furthermore, exogenous MG activated the phenylpropanoid biosynthetic pathway, promoting the production of lignin and phenolic compounds, which are associated with drought tolerance. Overall, our findings indicate that exogenous MG activates defense-related pathways to alleviate the toxicity derived from 'plant diabetes', thereby helping to maintain leaf function and yield production under drought.


Subject(s)
Diabetes Mellitus , Zea mays , Humans , Zea mays/genetics , Plant Senescence , Pyruvaldehyde/metabolism , Pyruvaldehyde/pharmacology , Droughts , Diabetes Mellitus/metabolism , Sugars/metabolism , Plant Leaves/metabolism , Stress, Physiological
4.
Plants (Basel) ; 12(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37765433

ABSTRACT

Understanding the water status of specific organs can be helpful in evaluating the life activities and growth conditions of maize. To accurately judge organ growth conditions and thus design appropriate interventions, it is necessary to clarify the true water dynamics of each maize organ. Using multiple maize cultivars with different growth periods, spatio-temporal water dynamics were analyzed here in the leaves, stalks, and ear components. Leaf water content was found to gradually decrease from both the bottom and top of the plant to the middle, whereas stalk water content decreased sequentially from the top to the bottom. Each successively higher node from the bottom of the plant was associated with decreases of 0.99% and 1.27% water content in the leaves and stalks, respectively. The water dynamics in leaves and internodes showed three clear stages: the slow loss, rapid loss, and balance stage. A water content of 60% appeared to be an irreversible turning point for initiation of senescence. Using normalized growth period as a measure, each of the tested cultivars could be assigned into one of two types based on their water dynamics: stay-water or general type. General-type cultivars had a shorter duration with a high water content and a water loss rate approximately twice as high as that of the stay-water type. This may have been related to the leaf senescence characteristics. However, the stay-water trait did not interfere with water dynamics of the ear components. Therefore, it may not be robust to evaluate the kernel dehydration of maize according to leaf senescence conditions due to the weak correlation between kernel water content and leaf senescence characteristics.

5.
Front Plant Sci ; 14: 1206829, 2023.
Article in English | MEDLINE | ID: mdl-37731984

ABSTRACT

The growth of yield outputs is dwindling after the first green revolution, which cannot meet the demand for the projected population increase by the mid-century, especially with the constant threat from extreme climates. Cereal yield requires carbon (C) assimilation in the source for subsequent allocation and utilization in the sink. However, whether the source or sink limits yield improvement, a crucial question for strategic orientation in future breeding and cultivation, is still under debate. To narrow the knowledge gap and capture the progress, we focus on maize, rice, and wheat by briefly reviewing recent advances in yield improvement by modulation of i) leaf photosynthesis; ii) primary C allocation, phloem loading, and unloading; iii) C utilization and grain storage; and iv) systemic sugar signals (e.g., trehalose 6-phosphate). We highlight strategies for optimizing C allocation and utilization to coordinate the source-sink relationships and promote yields. Finally, based on the understanding of these physiological mechanisms, we envisage a future scenery of "smart crop" consisting of flexible coordination of plant C economy, with the goal of yield improvement and resilience in the field population of cereals crops.

6.
Trends Plant Sci ; 28(8): 893-901, 2023 08.
Article in English | MEDLINE | ID: mdl-37080837

ABSTRACT

As an evolutionary strategy, plants overproduce ovaries as a safety net for survival, with those losing in the competition for resources being aborted. Grain abortion is, however, highly detrimental agronomically. The molecular basis of selective abortion of grain siblings remains unknown. In this opinion article we assess the current understanding of the molecular players controlling carbon resource import into ovaries and young grains, followed by an evaluation of the spatial hierarchy of sink capacity among grain siblings, focusing on the roles exerted by sugar transporters and enzymes. We argue that, upon sequential pollination and fertilization, robust activation of the carbon import and sugar signaling system plays a key role in establishing the capacity of grain siblings to acquire enough carbon resources to survive and thrive.


Subject(s)
Carbon , Edible Grain , Biological Transport , Biological Evolution , Sugars
7.
Plants (Basel) ; 12(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36771709

ABSTRACT

In the North China Plain, the excessive application of nitrogen (N) fertilizer for ensuring high yield and a single application at sowing for simplifying management in farmer practice lead to low N use efficiency and environmental risk in maize (Zea mays L.) production. However, it is unclear whether and how late split application with a lower level of N fertilizer influences maize yield. To address this question, a two-year field experiment was conducted with two commercial maize cultivars (Zhengdan 958 and Denghai 605) using a lower level of N input (180 kg ha-1) by setting up single application at sowing and split application at sowing and later stages (V12, R1, and R2) with four different ratios, respectively. The maize yield with split-applied 180 kg ha-1 N did not decrease compared to the average yield with 240 kg ha-1 N input in farmer practice, while it increased by 6.7% to 11.5% in the four N split-application treatments compared with that of the single-application control. Morphological and physiological analyses demonstrated that late split application of N (i) increased the net photosynthetic rate and chlorophyll content and thus promoted the photosynthetic efficiency during the reproductive stages; (ii) promoted the sink capacity via improved kernel number, endosperm cells division, and grain-filling rate; and (iii) increased the final N content and N efficiency in the plant. Therefore, we propose that late split application of N could reduce N fertilizer input and coordinately improve N efficiency and grain yield in summer maize production, which are likely achieved by optimizing the source-sink relations during the grain-filling stage.

8.
Front Plant Sci ; 13: 901186, 2022.
Article in English | MEDLINE | ID: mdl-35769293

ABSTRACT

Ear architecture is determined by two stable heritable traits, kernel row number (KRN) and kernel number per row (KNPR), but its relationship with drought resistance is still vague. To this end, we obtained 16 and 11 hybrids with slender (less KRN but more KNPR) and stubby (more KRN but less KNPR) ears by intentionally crossbreeding, respectively. These hybrids were exposed to a seven-day water deficit (WD) since silk emergence coupled with synchronous (SP) and continuous pollination (CP) to alter the pollination time gaps on ears. The results showed that the emerged silks in CP were 9.1 and 9.0% less than in the SP treatment in the stubby and slender ears, respectively, suggesting the suppression of asynchronous pollination on silk emergence. The stubby ears performed higher silking rate and yield compared with the slender ears with or without drought stress. To eliminate the inherent difference in sink capacities, we selected four hybrids for each ear type with similar silk and kernel numbers for further analyses. Interestingly, the stubby ears were less affected in silking rate and thus performed higher yield under drought compared with the slender ears. The finding suggests that ear architecture matters in the determination of drought resistance that deserves more attention in breeding.

9.
Plant J ; 110(1): 228-242, 2022 04.
Article in English | MEDLINE | ID: mdl-35020972

ABSTRACT

Developing seed depends on sugar supply for its growth and yield formation. Maize (Zea mays L.) produces the largest grains among cereals. However, there is a lack of holistic understanding of the transcriptional landscape of genes controlling sucrose transport to, and utilization within, maize grains. By performing in-depth data mining of spatio-temporal transcriptomes coupled with histological and heterologous functional analyses, we identified transporter genes specifically expressed in the maternal-filial interface, including (i) ZmSWEET11/13b in the placento-chalazal zone, where sucrose is exported into the apoplasmic space, and (ii) ZmSTP3, ZmSWEET3a/4c (monosaccharide transporters), ZmSUT1, and ZmSWEET11/13a (sucrose transporters) in the basal endosperm transfer cells for retrieval of apoplasmic sucrose or hexoses after hydrolysis by extracellular invertase. In the embryo and its surrounding regions, an embryo-localized ZmSUT4 and a cohort of ZmSWEETs were specifically expressed. Interestingly, drought repressed those ZmSWEETs likely exporting sucrose but enhanced the expression of most transporter genes for uptake of apoplasmic sugars. Importantly, this drought-induced fluctuation in gene expression was largely attenuated by an increased C supply via controlled pollination, indicating that the altered gene expression is conditioned by C availability. Based on the analyses above, we proposed a holistic model on the spatio-temporal expression of genes that likely govern sugar transport and utilization across maize maternal and endosperm and embryo tissues during the critical stage of grain set. Collectively, the findings represent an advancement towards a holistic understanding of the transcriptional landscape underlying post-phloem sugar transport in maize grain and indicate that the drought-induced changes in gene expression are attributable to low C status.


Subject(s)
Sugars , Zea mays , Edible Grain/genetics , Edible Grain/metabolism , Endosperm/genetics , Endosperm/metabolism , Gene Expression Regulation, Plant/genetics , Humans , Plant Proteins/genetics , Plant Proteins/metabolism , Sucrose/metabolism , Sugars/metabolism , Zea mays/metabolism
10.
J Proteomics ; 232: 104064, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33276190

ABSTRACT

Flooding constrains soybean growth, while melatonin enhances the ability of plants to tolerate abiotic stresses. To interpret the melatonin-mediated flooding response in soybeans, proteomic analysis was performed in root tips. Retarded growth and severe cell death were observed in flooded soybeans, but these phenotypes were ameliorated by melatonin treatment. A total of 634, 1401, and 1205 proteins were identified under control, flood, and flood plus melatonin conditions, respectively; and these proteins were predominantly associated with metabolism of protein, RNA, and the cell wall. Among these melatonin-induced proteins, eukaryotic aspartyl protease family protein was increased after flood compared with melatonin treatment group, in accordance with its upregulated transcript levels during stress. Eukaryotic translation initiation factor 5A was decreased after flood compared with melatonin. When stress was prolonged, its transcript levels were upregulated by flood, while they were not changed by melatonin. Furthermore, 13-hydroxylupanine O-tigloyltransferase was decreased by flood compared with melatonin; however, its transcription was upregulated by melatonin. In addition, reduced lignification in root tips of flooded soybeans was restored by melatonin. These results suggest that factors related to protein degradation and functional states of RNA play critical roles in promoting the effects of melatonin on soybean plants under flooding. SIGNIFICANCE: Flooding stress threatens soybean growth, while melatonin treatment enhances plant tolerance to stress stimuli. To examine the effects of melatonin on flooded soybeans, morphological analysis was performed. Melatonin promoted soybean growth as judged from greater fresh weight of plant, longer seedling length, and less evident cell death in flooding-stressed soybeans treated with melatonin than those plants exposed to flood alone. Proteomic analysis was conducted to explore the promoting effects of melatonin on soybeans under flooding stress. As a result, metabolism of protein metabolism, RNA regulation, and cell wall was enriched by proteins identified under control, flood, and flood plus melatonin conditions. Among these melatonin-induced proteins, abundance of eukaryotic aspartyl protease family protein, eukaryotic translation initiation factor 5A, and 13-hydroxylupanine O-tigloyltransferase displayed similar change patterns between the control and melatonin compared with flood; and transcript levels of genes encoding these proteins responded to flooding stress and melatonin treatment. In addition, activated cell degradation, expanded intercellular spaces, and reduced lignification in root tips of flooded soybeans were ameliorated by melatonin treatment.


Subject(s)
Glycine max , Melatonin , Floods , Gene Expression Regulation, Plant , Melatonin/pharmacology , Meristem/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Proteomics , Glycine max/metabolism , Stress, Physiological
11.
J Proteomics ; 230: 103999, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33017647

ABSTRACT

To reveal calcium-mediated germination in soybean, a gel-free/label-free proteomics was performed in radicle of seed imbibed with CaCl2. Morphological analysis presented promoting and suppressing performance of seed growth under 5 and 50 mM CaCl2, respectively. A total of 106 and 581 proteins were identified in response to 5 and 50 mM CaCl2, respectively. Among 33 proteins, which were simultaneously affected by 5 and 50 mM CaCl2 imbibition, proteins related to protein metabolism, cell, development, and stress showed reversed abundance in response to CaCl2 on dose-dependent manner. Notably, protein abundance of late embryogenesis abundant (LEA) 4-5, LEA4, and dehydrin decreased and increased by 5 and 50 mM CaCl2, respectively, consistent with the transcript level. Moreover, inhibited biosynthesis of gibberellic acid repressed growth of 5 mM CaCl2-imbibed soybean, while inhibition of abscisic acid biosynthesis released the suppressing effects of 50 mM CaCl2. Taken together, these results suggest that decreased or increased protein abundance of LEA4-5, LEA4, and dehydrin might determine promoting or suppressing effects of low or high level of calcium on soybean through enhancing seed sensitivity to gibberellic acid or abscisic acid during radicle protrusion. SIGNIFICANCE: Calcium serves as a versatile signal in plant growth; however, calcium-mediated germination on dose-dependent manner remains elusive. In this study, dual effects of calcium on radicle protrusion in soybean were investigated using proteomic approach. Radicle growth of germinating seed was improved by 5 mM CaCl2; however, it was retarded by 50 mM CaCl2. Late embryogenesis abundant (LEA) 4-5, LEA4, and dehydrin displayed converse profiles in response to low and high concentrations of CaCl2 at both protein abundance and gene expression level. Inhibited biosynthesis of gibberellic acid (GA) significantly impeded radicle protrusion in presence of low concentration of CaCl2, while inhibiting of abscisic acid (ABA) biosynthesis released suppression induced by high concentration of CaCl2. These findings suggest that LEA proteins are associated with calcium-mediated radicle protrusion on dose-dependent manner, and seed sensitivity to GA and ABA might determine promoting and suppressing effects of calcium on radicle protrusion in soybean.


Subject(s)
Calcium , Glycine max , Abscisic Acid/pharmacology , Gene Expression Regulation, Plant , Germination , Proteomics , Seeds
12.
Front Microbiol ; 11: 1396, 2020.
Article in English | MEDLINE | ID: mdl-32714305

ABSTRACT

Botrytis cinerea is a destructive plant pathogenic ascomycete that causes serious pre- and post-harvest losses worldwide. The novel sterol 14α-demethylase inhibitor (DMI) pyrisoxazole was recently registered for the control of tomato gray mold caused by B. cinerea in China. Baseline sensitivity of 110 B. cinerea isolates collected from nine provinces in China to pyrisoxazole was demonstrated, with a mean EC50 of 0.057 ± 0.029 µg/ml. Eleven stable mutants resistant to pyrisoxazole were generated via UV irradiation (RU-mutants) and spontaneous selection (RS-mutants) of conidia. The efficacy of pyrisoxazole against the resistant mutants was significantly lower than that of the sensitive isolates. Most of the pyrisoxazole- resistant mutants were less fit than the sensitive isolates, with reduced sporulation, conidia germination, sclerotium production, and pathogenicity, which was confirmed by the competitive ability test. Positive cross-resistance was only observed between pyrisoxazole and the DMIs tebuconazole and prochloraz, but not between pyrisoxazole and non-DMIs iprodione, procymidone, diethofencarb, fluazinam, pyrimethanil, or fludioxonil. A two-point mutation, at G476S and K104E in the RU-mutants, and a one point mutation, M231T, in the RS-mutants, were detected in the CYP51 protein of the resistant mutants. When exposed to pyrisoxazole, the induced expression level of CYP51 increased in the resistant isolates as compared to sensitive ones. Molecular docking suggested that G476S and M231T mutations both led to the loss of electrostatic interactions between CYP51 and pyrisoxazole, while no change was found with the K104E mutation. Thus, two point mutations on CYP51 protein combined with induced expression of its target gene appeared to mediate the pyrisoxazole resistance of B cinerea.

13.
J Plant Physiol ; 251: 153194, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32563766

ABSTRACT

The interception of irradiation by smog pollution and cloud cover associated with extreme rainfall events has become an increasingly important limiting factor in crop production in China. Little is known about the adaptation of carbon (C) allocation to periodic low irradiance in field conditions. The trehalose signaling pathway plays a critical role in adapting C allocation to the environment in crops but its importance in adaptation to low light in field conditions is not known. To determine the effects of low irradiance on C economy and maize yield, two commonly grown hybrids (LY-16 and ZD-958) were subject to three levels of shading (15 %, 50 %, and 97 %) for one week from V13 stage in two successive seasons. Shading led to yield loss mainly due to decreased kernel number, which was greater in LY-16 than ZD-958. Effects of shading on leaf area and photosynthesis were similar in both varieties. Starch levels in leaves were maintained, whereas total soluble carbohydrates were reduced up to fivefold by shading in both varieties. Shading increased the proportion of photoassimilate retained in leaves relative to reproductive organs. Carbohydrates in ears and stem were decreased by shading similarly in both varieties. Amongst the parameters measured, the main difference between LY-16 and ZD-958 associated with yield penalty was the expression of class II trehalose phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) genes which were increased due to shading in leaves and ears, particularly in ears of LY-16. It is concluded that altered C fixation and allocation by low irradiance limited ear growth at pre-anthesis. Activation of TPSII and TPP genes indicates that the trehalose pathway likely plays a role in ear development under low light and could be a target for yield improvement under such conditions as with other stresses.


Subject(s)
Carbon/metabolism , Inflorescence/growth & development , Photosynthesis , Sunlight , Trehalose/deficiency , Zea mays/growth & development , Plant Leaves/growth & development , Plant Leaves/metabolism , Zea mays/genetics
14.
Sci Total Environ ; 734: 139269, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32450404

ABSTRACT

Climatic changes, such as global warming and altered precipitation are of major environmental concern. Given that ecosystem processes are strongly regulated by temperature and water content, climate changes are expected to affect the carbon (C) and nitrogen (N) cycles, especially in agricultural systems. However, the interactive effects of soil warming and increased precipitation on greenhouse gas emissions are poorly understood, particularly in the North China Plain (NCP). Therefore, a field experiment was conducted over two spring maize seasons (May-Sept.) in 2018 and 2019. Two levels of temperature (T0: ambient temperature; T1: increase on average of 4.0 °C) combined with two levels of precipitation (W0: no artificial precipitation; W1: +30% above ambient precipitation) were carried out in the NCP. Our results showed that soil warming significantly promoted cumulative N2O and CO2 emissions by 49% and 39%, respectively. Additionally, increased precipitation further enhanced the N2O and CO2 emissions by 54% and 14%, respectively. This suggests that high soil temperature and water content have the capacity to stimulate microbial activities, and thus accelerate the soil C and N cycles. Soil warming increased CH4 uptake by 293%, but increased precipitation had no effect on CH4 fluxes. Overall, soil warming and increased precipitation significantly enhanced the GHG budget by 39% and 16%, respectively. This study suggests that climate warming will lead to enhanced GHG emissions in the spring maize season in the NCP, while increased precipitation in the future may further stimulate GHG emissions in a warming world.

15.
Plant Physiol Biochem ; 148: 220-227, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31978750

ABSTRACT

Triazole fungicides have been used for seed treatment to control soilborne diseases of maize, but seedlings coming from triazole-coated seed show serious phytotoxicity under chilling stress. To understand this phytotoxic impact, maize seed was treated with four triazoles fungicides and the corresponding seedlings were analysed on growth and gene expression. We found that maize seed coated with difenoconazole and tebuconazole exhibited either no or increased effects on germination and growth of maize at 25 °C, regardless of chemical concentrations. When maize seedlings were subjected to chilling treatment, however, their growth was significantly inhibited, and the inhibition was positively correlated with the rate of triazole application. Mesocotyl length decreased by 32.19-44.73% by difenoconazole, and 23.53-32.08% by tebuconazolet at rates of 1:50 and 1:25, respectively. However, myclobutanil did not have any effects at any temperatures. The contents of the gibberellin GA12 and abscisic acid in maize seedlings developed from difenoconazole- or tebuconazole-coated seed were significantly increased under chilling stress. The expression of two key catabolic enzyme genes, GA2ox3 and GA2ox4, was significantly up-regulated immediately following chilling stress and 2 days after recovery at 25 °C in the seedlings treated with difenoconazole or tebuconazole. This imbalance in phytohormones may explain why difenoconazole- or tebuconazole-coated seed more likely results in the phytotoxicity of maize seedlings under a low temperature condition during seed emergence and seedling growth. Since myclobutanil did not have this negative effect, it can be applied for seed coating in areas where temperatures are low during early seedling growth.


Subject(s)
Seedlings , Stress, Physiological , Triazoles , Zea mays , Abscisic Acid/analysis , Fungicides, Industrial/pharmacology , Germination , Gibberellins/analysis , Seedlings/enzymology , Seeds/chemistry , Stress, Physiological/drug effects , Triazoles/pharmacology , Zea mays/drug effects
16.
RSC Adv ; 10(49): 29068-29076, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-35521147

ABSTRACT

Different amounts of SiO2 were added to the Al2O3 binders to investigate the binder effect on zeolite Y-based catalysts. The added SiO2 improved the mesopore volume and acidity of the catalysts. Characterization results showed that the catalysts' acid amount increased with increasing the SiO2 amount in the binder, which achieved maximum value when 12% SiO2 was added to the binder. The doped SiO2 in Al2O3 binders improved the Al2O3 phase transformation temperature, which is crucial for Al species to break out of the phase energy and migrate into the zeolite. The lifetime of catalyst Y-Al2O3-12SiO2 is 3.7 times higher than that of Y-Al2O3-0SiO2, and the selectivity of the target products simultaneously improved by 7 percentage point. This work should bring some inspiration to the design and application of zeolite-based catalysts.

17.
Plant Cell Environ ; 43(4): 903-919, 2020 04.
Article in English | MEDLINE | ID: mdl-31851373

ABSTRACT

During maize production, drought throughout the flowering stage usually induces seed abortion and yield losses. The influence of postpollination drought stress on seed abortion and its underlying mechanisms are not well characterized. By intervening in the competition for assimilates between kernel siblings under different degrees of postpollination drought stresses accompanied by synchronous pollination (SP) and incomplete pollination (ICP) approaches, the mechanisms of postpollination abortion were investigated at physiological and molecular levels. Upon SP treatment, up to 15% of the fertilized apical kernels were aborted in the drought-exacerbated competition for assimilates. The aborted kernels exhibited weak sucrose hydrolysis and starch synthesis but promoted the synthesis of trehalose-6-phosphate and ethylene. In ICP where basal pollination was prevented, apical kernel growth was restored with reinstated sucrose metabolism and starch synthesis and promoted sucrose and hexose levels under drought stress. In addition, the equilibrium between ethylene and polyamine in response to the drought and pollination treatments was associated with the abortion process. We conclude that competition for assimilates drives postpollination kernel abortion, whereas differences in sugar metabolism and the equilibrium between ethylene and polyamines may be relevant to the "live or die" choice of kernel siblings during this competition.


Subject(s)
Edible Grain/physiology , Zea mays/physiology , Carbohydrates/analysis , Dehydration , Edible Grain/chemistry , Edible Grain/growth & development , Ethylenes/metabolism , Photosynthesis/physiology , Plant Leaves/physiology , Pollination/physiology , Putrescine/analysis , Spermidine/analysis , Spermine/analysis , Water/metabolism , Zea mays/growth & development
18.
BMC Plant Biol ; 19(1): 508, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31752685

ABSTRACT

BACKGROUND: Carbohydrate partitioning and utilization is a key determinant of growth rate and of yield in plants and crops. There are few studies on crops in field conditions. In Arabidopsis, starch accumulation in leaves is a negative indicator of growth rate. RESULTS: Here, we wished to establish if starch accumulation in leaves could potentially be a marker for growth rate and yield in crops such as maize. We characterized daily patterns of non-structural carbohydrate (NSC) at different growth stages over two seasons for maize hybrids in the field. In 27 commercial hybrids, we found a significant negative relationship between residual starch in leaves and plant growth, but not with final yield and biomass. We then focused on three typical hybrids and established a method for calculation of C turnover in photosynthetic leaves that took into account photosynthesis, leaf area and NSC accumulation. The ratios of stored NSC decreased from approximately 15% to less than 4% with ongoing ontogeny changes from V7 to 28 days after pollination. CONCLUSION: The proportion rather than absolute amount of carbon partitioned to starch in leaves at all stages of development related well with yield and biomass accumulation. It is proposed that screening plants at an early vegetative growth stage such as V7 for partitioning into storage may provide a prospective method for maize hybrid selection. Our study provides the basis for further validation as a screening tool for yield.


Subject(s)
Carbon/metabolism , Starch/metabolism , Zea mays/physiology , Biological Ontologies , Biomass , Carbohydrate Metabolism , Crops, Agricultural , Photosynthesis , Plant Leaves/growth & development , Plant Leaves/physiology , Seasons , Zea mays/growth & development
19.
Sci Total Environ ; 635: 1372-1382, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29710668

ABSTRACT

No-tillage (NT) is a popular agricultural technique worldwide, but it remains unclear how NT affects the yield, evapotranspiration (ET), and water use efficiency (WUE) of maize and wheat. We performed a meta-analysis of the NT effects on the yield, ET and WUE for wheat and maize based on the literatures published during 1950-2018. Yield, ET, and WUE varied by species, region, and agronomic and environmental factors. Averaged across all the geographic locations NT had no effect on the yield, ET, or WUE of wheat in northwestern and northern China, and no effect on the yield or ET of maize, but significantly increased the maize WUE by 5.9%. NT increased the WUE and yield of wheat in regions with ≤400 mm of mean annual precipitation, increased the yield in regions with 400-600 mm of precipitation, and decreased the yield and ET in regions with ≥600 mm, but had no effects on maize. In the first 1-3 years of NT implementation, the wheat ET was reduced. However, a significant decrease in maize yield and ET occurred in 3-6 years of NT implementation. Meanwhile, yield and WUE in both wheat and maize were improved after >6 years. In general, NT effect on yield, ET, or WUE was not related to soil texture. However, NT increased maize WUE in a medium soil texture. Without crop rotation, NT increased wheat yield and ET but decreased maize yield. No NT effects were observed when crop residues retained and under crop rotation. Consequently, optimizing NT effects on yield, ET and WUE for wheat and maize in China was largely dependent on environmental conditions and management practices.

20.
PLoS One ; 13(3): e0193895, 2018.
Article in English | MEDLINE | ID: mdl-29518163

ABSTRACT

Improving winter wheat grain yield and water use efficiency (WUE) with minimum irrigation is very important for ensuring agricultural and ecological sustainability in the Northern China Plain (NCP). A three-year field experiment was conducted to determine how single irrigation can improve grain yield and WUE by manipulating the "sink-source" relationships. To achieve this, no-irrigation after sowing (W0) as a control, and five single irrigation treatments after sowing (75 mm of each irrigation) were established. They included irrigation at upstanding (WU), irrigation at jointing (WJ), irrigation at booting (WB), irrigation at anthesis (WA) and irrigation at medium milk (WM). Results showed that compared with no-irrigation after sowing (W0), WU, WJ, WB, WA and WM significantly improved mean grain yield by 14.1%, 19.9%, 17.9%, 11.6%, and 7.5%, respectively. WJ achieved the highest grain yield (8653.1 kg ha-1) and WUE (20.3 kg ha-1 mm-1), and WB observed the same level of grain yield and WUE as WJ. In comparison to WU, WJ and WB coordinated pre- and post-anthesis water use while reducing pre-anthesis and total evapotranspiration (ET). They also retained higher soil water content above 180 cm soil layers at anthesis, increased post-anthesis water use, and ultimately increased WUE. WJ and WB optimized population quantity and individual leaf size, delayed leaf senescence, extended grain-filling duration, improved post-anthesis biomass and biomass remobilization (source supply capacity) as well as post-anthesis biomass per unit anthesis leaf area (PostBA-leaf ratio). WJ also optimized the allocation of assimilation, increased the spike partitioning index (SPI, spike biomass/biomass at anthesis) and grain production efficiency (GPE, the ratio of grain number to biomass at anthesis), thus improved mean sink capacity by 28.1%, 5.7%, 21.9%, and 26.7% in comparison to W0, WU, WA and WM, respectively. Compared with WA and WM, WJ and WB also increased sink capacity, post-anthesis biomass and biomass remobilization. These results demonstrated that single irrigation at jointing or booting could improve grain yield and WUE via coordinating the "source-sink" relationships with the high sink capacity and source supply capacity. Therefore, we propose that under adequate soil moisture conditions before sowing, single irrigation scheme from jointing to booting with 75 mm irrigation amount is the optimal minimum irrigation practice for wheat production in this region.


Subject(s)
Agricultural Irrigation/methods , Triticum/growth & development , Biomass , China , Edible Grain , Efficiency , Seasons , Soil/chemistry , Triticum/metabolism , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...