Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 13(11)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32526988

ABSTRACT

Incremental sheet forming (ISF) is a novel flexible forming technology with advantages, such as a low forming force, low-energy-consuming equipment, and good forming performance. The lack of available information about the formability of the two-point incremental forming (TPIF) process makes it limited for practical applications. Taking an irregular stepped part as the target part, the effects of process parameters on the thickness uniformity when using TPIF with a positive die for AA1060 aluminum alloy sheets were investigated. First, the set of optimal parameters regarding the diameter of the tool head, feed rate, and the step size were obtained through orthogonal experiments. Furthermore, the optimal parameter set of the number of forming passes, the direction of movement of the forming tool, and the forming angle was determined and the optimal forming result was numerically and experimentally verified. This demonstrated that the parameters affecting the thickness uniformity of the irregular stepped parts were, in descending order, the diameter of the forming tool, the feed rate, and the step size, with corresponding optimal values of 12 mm, 15,000 mm/min, and 0.4 mm, respectively. With an increase of the number of passes and a decrease of the forming angle between adjacent passes, and adopting an alternating clockwise and counterclockwise toolpath, the thickness uniformity of the formed parts was effectively improved.

2.
Materials (Basel) ; 11(10)2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30274154

ABSTRACT

NiAl-based composites reinforced by CrMnFeCoNi high-entropy alloy (HEA) particles were fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). The microstructure, mechanical, and tribological properties of the NiAl-HEA composites were investigated. Microstructural analyses show that after SPS, the HEA phase homogenously distributed in the NiAl matrix. Non-uniform diffusion of various elements occurred during the high temperature sintering process. Transmission electron microscope (TEM) observation of the composites revealed that many nano particle of Al2O3 generated at the grain boundary. The yield strength significantly increased after adding HEA particles. The compressive strength of the composites increased with the contents of HEA increasing, which should be attributed to the second phase hardening effect of HEA particles and fine grain strengthening effect. The composite of 10 wt.% HEA exhibited significant room temperature compressive properties, with the ultimate compressive strength of 2692 MPa and the compressive strain of 34.2%, respectively. The results of the wear tests show that the addition of HEA will reduce the wear resistance of composites to some extent and slightly increase the coefficients of friction (COFs) of the composites.

SELECTION OF CITATIONS
SEARCH DETAIL