Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(2): e24432, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312705

ABSTRACT

Injuries to pancreatic ß-cells are intricately linked to the onset of diabetes mellitus (DM). Metformin (Met), one of the most widely prescribed medications for diabetes and metabolic disorders, has been extensively studied for its antioxidant, anti-aging, anti-glycation, and hepatoprotective activities. N6-methyladenosine (m6A) plays a crucial role in the regulation of ß-cell growth and development, and its dysregulation is associated with metabolic disorders. This study aimed to elucidate the mechanistic basis of m6A involvement in the protective effects of Met against oxidative damage in pancreatic ß-cells. Hydrogen peroxide (H2O2) was employed to induce ß-cell damage. Remarkably, Met treatment effectively increased methylation levels and the expression of the methyltransferase METTL14, subsequently reducing H2O2-induced apoptosis. Knocking down METTL14 expression using siRNA significantly compromised cell viability. Conversely, targeted overexpression of METTL14 specifically in ß-cells substantially enhanced their capacity to withstand H2O2-induced stress. Molecular evidence suggests that the anti-apoptotic properties of Met may be mediated through Bcl-xL and Bim proteins. In conclusion, our findings indicate that Met induces METTL14-mediated alterations in m6A methylation levels, thereby shielding ß-cells from apoptosis and oxidative damage induced by oxidative stress.

2.
Biomed Pharmacother ; 168: 115835, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37924788

ABSTRACT

Metformin (Met) is the recommended first-line therapeutic drug for type 2 diabetes mellitus (T2DM) and exerts protective effects on ß-cell damage. Ferroptosis, a new form of cell death, is associated with pancreatic islet injury in patients with T2DM. However, the protective effects of Met treatment against ß-cell damage through ferroptosis modulation remain under-reported. This study investigated the in vivo effects of Met treatment on pancreatic ß-cell ferroptosis using two different diabetic mouse models, namely, low-dose streptozotocin (STZ) and high-fat diet (HFD)-induced diabetic mice and db/db mice. Met treatment significantly restored insulin release, reduced cell mortality, and decreased the overproduction of lipid-related reactive oxygen species in the islets of both STZ/HFD-induced diabetic mice and db/db mice. Administration of the Ras-selective lethal 3 injection significantly attenuated the antiferroptosis effects of Met. Mechanistically, Met treatment alleviated ß-cell ferroptosis in T2DM, which was associated with the regulation of the GPX4/ACSL4 axis in the islets. In conclusion, our findings highlight the significance of ferroptosis in T2DM ß-cell damage and provide novel insights into the protective effects of Met against islet ß cells.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Ferroptosis , Insulin-Secreting Cells , Metformin , Humans , Mice , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Metformin/pharmacology , Metformin/therapeutic use , Metformin/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism
3.
Eur J Pharmacol ; 956: 175967, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37549729

ABSTRACT

Ferroptosis, a new type of cell death, is associated with pancreatic ß cell damage. However, the role of glucolipotoxicity in inducing ß cell ferroptosis remains unclear. Metformin (Met), exenatide (Exe), and saxagliptin (Sax) are frequently used anti-hyperglycaemic drugs. However, their protective effects on ß cells through ferroptosis modulation are not well-established. In this study, we observed significant ferroptosis in NIT-1 cells and primary mouse islets after exposure to high glucose and palmitate (HG/PA). Compared to Exe and Sax, Met significantly alleviated glucolipotoxicity-induced pancreatic ß cell ferroptosis. Blocking the activity of glutathione peroxidase 4 (GPX4) with Ras-selective lethal 3 or inhibiting its expression by small interfering RNA transfection significantly attenuated the anti-ferroptosis effects of Met. Mechanistically, Met alleviates HG/PA-induced ß cell ferroptosis by regulating the GPX4/ACSL4 axis. Collectively, our findings highlight the significance of ferroptosis in pancreatic ß cell glucolipotoxicity-induced injury and provide novel insights into the protective effects of Met on islet ß cells.


Subject(s)
Ferroptosis , Insulin-Secreting Cells , Islets of Langerhans , Metformin , Animals , Mice , Cell Death , Insulin-Secreting Cells/metabolism , Metformin/pharmacology
4.
Clin Immunol ; 247: 109234, 2023 02.
Article in English | MEDLINE | ID: mdl-36649749

ABSTRACT

Obesity is a complicated metabolic disease characterized by meta-inflammation in adipose tissues. In this study, we explored the roles of a new long non-coding RNA (lncRNA), HEM2ATM, which is highly expressed in adipose tissue M2 macrophages, in modulating obesity-associated meta-inflammation and insulin resistance. HEM2ATM expression decreased significantly in adipose tissue macrophages (ATMs) obtained from epididymal adipose tissues of high-fat diet (HFD)-induced obese mice. Overexpression of macrophage HEM2ATM improved meta-inflammation and insulin resistance in the adipose tissues of HFD-fed mice. Functionally, HEM2ATM negatively regulated the production of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in macrophages. Mechanistically, HEM2ATM bound to heterogeneous nuclear ribonucleoprotein U (hnRNP U), suppressed hnRNP U translocation from the nucleus to the cytoplasm, hindered the function of cytoplasmic hnRNP U on TNF-α and IL-6 mRNA stabilization, and decreased the secretion of TNF-α and IL-6. Collectively, HEM2ATM is a novel suppressor of obesity-associated meta-inflammation and insulin resistance.


Subject(s)
Insulin Resistance , RNA, Long Noncoding , Mice , Animals , Heterogeneous-Nuclear Ribonucleoprotein U/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Insulin Resistance/genetics , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Adipose Tissue , Inflammation/metabolism , Obesity/genetics , Obesity/complications , Mice, Inbred C57BL
5.
Front Endocrinol (Lausanne) ; 13: 986419, 2022.
Article in English | MEDLINE | ID: mdl-36237191

ABSTRACT

Background: To investigate the dynamic changes of urine N6-methyladenosine (m6A) levels in patients with type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN) and evaluate the clinical significance. Methods: First, the levels of urine m6A were examined and compared among 62 patients with T2DM, 70 patients with DN, and 52 age- and gender-matched normal glucose tolerant subjects (NGT) by using a MethyIFIashTM Urine m6A Quantification Kit. Subsequently, we compared the concentrations of urine m6A between different stages of DN. Moreover, statistical analysis was performed to evaluate the association of urine m6A with DN. Results: The levels of m6A were significantly decreased in patients with DN [(16.10 ± 6.48) ng/ml], compared with NGT [(23.12 ± 7.52) ng/ml, P < 0.0001] and patients with T2DM [(20.39 ± 7.16) ng/ml, P < 0.0001]. Moreover, the concentrations of urine m6A were obviously reduced with the deterioration of DN. Pearson rank correlation and regression analyses revealed that m6A was significantly associated with DN (P < 0.05). The areas under the receiver operator characteristics curve (AUC) were 0.783 (95% CI, 0.699 - 0.867, P < 0.0001) for the DN and NGT groups, and 0.737 (95% CI, 0.639 - 0.835, P < 0.0001) for the macroalbuminuria and normoalbuminuria groups, and the optimal cutoff value for m6A to distinguish the DN from NGT and the macroalbuminuria from normoalbuminuria cases was 0.4687 (diagnostic sensitivity, 71%; diagnostic specificity, 76%) and 0.4494 (diagnostic sensitivity, 79%; diagnostic specificity, 66%), respectively. Conclusions: The levels of urine m6A are significantly decreased in patients with DN and change with the deterioration of DN, which could serve as a prospective biomarker for the diagnosis of DN.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Adenosine/analogs & derivatives , Biomarkers/urine , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/etiology , Glucose , Humans
6.
Front Endocrinol (Lausanne) ; 13: 910868, 2022.
Article in English | MEDLINE | ID: mdl-35872977

ABSTRACT

Methylglyoxal, a major precursor of advanced glycation end products, is elevated in the plasma of patients with type 2 diabetes mellitus. Islet ß-cell function was recently shown to be regulated by N6-methyladenosine (m6A), an RNA modification consisting of methylation at the N6 position of adenosine. However, the role of m6A methylation modification in methylglyoxal-induced impairment of insulin secretion in pancreatic ß cells has not been clarified. In this study, we showed that treatment of two ß-cell lines, NIT-1 and ß-TC-6, with methylglyoxal reduced m6A RNA content and methyltransferase-like 3 (METTL3) expression levels. We also showed that silencing of METTL3 inhibited glucose-stimulated insulin secretion (GSIS) from NIT-1 cells, whereas upregulation of METTL3 significantly reversed the methylglyoxal-induced decrease in GSIS. The methylglyoxal-induced decreases in m6A RNA levels and METTL3 expression were not altered by knockdown of the receptor for the advanced glycation end product but were further decreased by silencing of glyoxalase 1. Mechanistic investigations revealed that silencing of METTL3 reduced m6A levels, mRNA stability, and the mRNA and protein expression levels of musculoaponeurotic fibrosarcoma oncogene family A (MafA). Overexpression of MafA greatly improved the decrease in GSIS induced by METTL3 silencing; silencing of MafA blocked the reversal of the MG-induced decrease in GSIS caused by METTL3 overexpression. The current study demonstrated that METTL3 ameliorates MG-induced impairment of insulin secretion in pancreatic ß cells by regulating MafA.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Secretion , Insulin-Secreting Cells , Maf Transcription Factors, Large , Methyltransferases , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Humans , Insulin Secretion/drug effects , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Maf Transcription Factors, Large/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Pyruvaldehyde/adverse effects , RNA, Messenger/genetics
7.
Front Pharmacol ; 12: 708177, 2021.
Article in English | MEDLINE | ID: mdl-34322029

ABSTRACT

Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus (DM). One of the hallmarks of the DCM is enhanced oxidative stress in myocardium. The aim of this study was to research the underlying mechanisms involved in the effects of dapagliflozin (Dap) on myocardial oxidative stress both in streptozotocin-induced DCM rats and rat embryonic cardiac myoblasts H9C2 cells exposed to high glucose (33.0 mM). In in vivo studies, diabetic rats were given Dap (1 mg/ kg/ day) by gavage for eight weeks. Dap treatment obviously ameliorated cardiac dysfunction, and improved myocardial fibrosis, apoptosis and oxidase stress. In in vitro studies, Dap also attenuated the enhanced levels of reactive oxygen species and cell death in H9C2 cells incubated with high glucose. Mechanically, Dap administration remarkably reduced the expression of membrane-bound nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits gp91phox and p22phox, suppressed the p67phox subunit translocation to membrane, and decreased the compensatory elevated copper, zinc superoxide dismutase (Cu/Zn-SOD) protein expression and total SOD activity both in vivo and in vitro. Collectively, our results indicated that Dap protects cardiac myocytes from damage caused by hyperglycemia through suppressing NADPH oxidase-mediated oxidative stress.

8.
Front Physiol ; 9: 548, 2018.
Article in English | MEDLINE | ID: mdl-29872401

ABSTRACT

Background: Because the pathogenesis of high altitude polycythemia (HAPC) is unclear, the aim of the present study was to explore whether abnormal iron metabolism is involved in the pathogenesis of HAPC and the possible cause. Methods: We examined the serum levels of iron, total iron binding capacity, soluble transferrin receptor (sTfR), ferritin, and hepcidin as well as erythropoietin (EPO) and inflammation-related cytokines in 20 healthy volunteers at sea level, 36 healthy high-altitude migrants, and 33 patients with HAPC. Mice that were exposed to a simulated hypoxic environment at an altitude of 5,000 m for 4 weeks received exogenous iron or intervention on cytokines, and the iron-related and hematological indices of peripheral blood and bone marrow were detected. The in vitro effects of some cytokines on hematopoietic cells were also observed. Results: Iron mobilization and utilization were enhanced in people who had lived at high altitudes for a long time. Notably, both the iron storage in ferritin and the available iron in the blood were elevated in patients with HAPC compared with the healthy high-altitude migrants. The correlation analysis indicated that the decreased hepcidin may have contributed to enhanced iron availability in HAPC, and decreased interleukin (IL)-10 and IL-22 were significantly associated with decreased hepcidin. The results of the animal experiments confirmed that a certain degree of iron redundancy may promote bone marrow erythropoiesis and peripheral red blood cell production in hypoxic mice and that decreased IL-10 and IL-22 stimulated iron mobilization during hypoxia by affecting hepcidin expression. Conclusion: These data demonstrated, for the first time, that an excess of obtainable iron caused by disordered IL-10 and IL-22 was involved in the pathogenesis of some HAPC patients. The potential benefits of iron removal and immunoregulation for the prevention and treatment of HAPC deserve further research.

9.
Front Physiol ; 9: 1950, 2018.
Article in English | MEDLINE | ID: mdl-30687133

ABSTRACT

Background: Hypoxia appears in a number of extreme environments, including high altitudes, the deep sea, and during aviation, and occurs in cancer, cardiovascular disease, respiratory failures and neurological disorders. Though it is well recognized that hypoxic preconditioning (HPC) exerts endogenous neuroprotective effect against severe hypoxia, the mediators and underlying molecular mechanism for the protective effect are still not fully understood. This study established a hippocampus metabolomics approach to explore the alterations associated with HPC. Methods: In this study, an animal model of HPC was established by exposing the adult BALB/c mice to acute repetitive hypoxia four times. Ultra-high liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) in combination with univariate and multivariate statistical analyses was employed to deciphering metabolic changes associated with HPC in hippocampus tissue. MetaboAnalyst 3.0 was used to construct HPC related metabolic pathways. Results: The significant metabolic differences in hippocampus between the HPC groups and control were observed, indicating that HPC mouse model was successfully established and HPC could caused significant metabolic changes. Several key metabolic pathways were found to be acutely perturbed, including phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, phenylalanine metabolism, glutathione metabolism, alanine, aspartate and glutamate metabolism, tyrosine metabolism, tryptophan metabolism, purine metabolism, citrate cycle, and glycerophospholipid metabolism. Conclusion: The results of the present study provided novel insights into the mechanisms involved in the acclimatization of organisms to hypoxia, and demonstrated the neuroprotective mechanism of HPC.

10.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(10): 1290-1295, 2017 Oct 20.
Article in Chinese | MEDLINE | ID: mdl-29070456

ABSTRACT

OBJECTIVE: To construct a genetically engineered Escherichia coli expressing chromate (Cr) ion transporter ChrA and test its Cr resistance capacity. METHODS: ChrA gene was cloned by PCR from the DNA template of Serratia sp. S2 and linked with the prokaryotic vector pET-28a (+). The recombinant vector was transformed into E.coli BL21 (DE3) cells for expression of ChrA protein. Cr (VI) risistance and Cr (VI) uptake and efflux of the engineered bacteria were tested, and the effects of Cr loading time, oxyanions (ulfate, molybdate, vanadate, tungstate), and respiratory inhibitors (valinomycin, CN-, oligomycin, and NADH) on Cr (VI) efflux were examined to analyze the pathway of Cr (VI) transport by ChrA protein. RESULTS: The engineered E. coil strain was successfully constructed. Experiments using cell suspensions showed a lowered Cr2O72- uptake but an increased efflux capacity of ChrA-engineered bacteria compared with the control strain (P<0.05). The engineered E. coil cells in exponential growth incubated for 30 min in the presence of 50 mg/L Cr2O72- showed a total displacement of Cr (VI) of 20% after resuspension in PBS at 10 min, but chromate efflux decreased subsequently as the incubation time extended. Oxyanions sulfate and molybdate significantly inhibited chromate efflux in the engineered bacteria (P<0.05), whereas tungstate and vanadate did not obviously affect chromate efflux; chromate efflux was significantly inhibited by K+ ionophore valinomycin and CN-, enhanced by NADH (P<0.05), but not affected by oligomycin, suggesting the role of chromate transporter ChrA as a chemiosmotic pump that extrudes chromate using the proton-motive force. CONCLUSION: ChrA can efficiently transport chromate ions from the cytoplasm to enhance chromate resistance of the genetically engineered E. coli.


Subject(s)
Bacterial Proteins/metabolism , Chromates/pharmacology , Drug Resistance, Bacterial , Escherichia coli/drug effects , Membrane Proteins/metabolism , Metabolism, Inborn Errors , Bacterial Proteins/genetics , Chromium , Escherichia coli/metabolism , Membrane Proteins/genetics , Microorganisms, Genetically-Modified , Serratia/genetics
11.
Int J Clin Exp Med ; 8(8): 14030-5, 2015.
Article in English | MEDLINE | ID: mdl-26550363

ABSTRACT

OBJECTIVE: Astragalus is a traditional Chinese medicine to improve the function of the body. The purpose of this study is to investigate the effect of astragalus on improvement of anti-fatigue capacity in mice under simulated plateau environment. METHODS: Male Kunming mice were randomly divided into the following groups: the control group, astragalus treatment groups in low dosage (LD) (1.0 g/kg·d), mid dosage (MD) (3.0 g/kg·d), and high dosage (HD) (30 g/kg·d). The control group were fed under normoxia environment, and hypoxic mice were fed at a stimulated elevation of 5000 meters. After continuous intragastric administration for 10 days, exhaustive swimming experiment was conducted in the anoxic environment. The swimming time, glucose and lactic acid concentration in blood, glycogen contents in liver, SOD and MDA were determined. RESULTS: Compared with the control group, the swimming time of each astragalus treated group was evidently prolonged (P < 0.05), and the area under the blood lactic acid curve was significantly decreased (P < 0.05). In the high and middle dose of astragalus group, liver glycogen was obviously increased. After exhausted swimming, glycogen contents in blood and SOD were significantly increased, while MDA was evidently reduced (P < 0.05). CONCLUSION: Astragalus can alleviate physical fatigue in mice under simulated plateau environment. It has an obvious anti-fatigue effect and it's worthy of further study.

12.
Molecules ; 20(5): 8060-71, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25951003

ABSTRACT

The MTT assay, as a screening method, has been widely used to measure the viability and proliferation of cells. However, it should be noted that MTT assay may not accurately reflect the effect of Cistanche tubulosa ethanolic extract on EA.hy926 cells viability. To investigate and identity the components responsible for the contradictory observations of the MTT assay, echinacoside and acteoside, two main phenylethanoid glycosides, from C. tubulosa ethanolic extract were isolated. The data derived from CCK-8, Hoechst 33342 and annexin V-FITC/PI assays suggest that the caffeyl group present in both isolated compounds was responsible for the conflicting results of the MTT assay. These data emphasize the need of using a variety of different methods to determine the effect of medicinal agents on cell viability to avoid generating misleading results.


Subject(s)
Cistanche/chemistry , Glycosides/chemistry , Tetrazolium Salts/chemistry , Thiazoles/chemistry , Cell Line , Cell Survival/drug effects , Glycosides/pharmacology , Humans
13.
Exp Hematol ; 42(9): 804-15, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24769210

ABSTRACT

The mechanism of accelerated erythropoiesis under the hypoxic conditions of high altitude (HA) remains largely obscure. Here, we investigated the potential role of bone marrow (BM) T cells in the increased production of erythrocytes at HA. We found that mice exposed to a simulated altitude of 6,000 m for 1-3 weeks exhibited a significant expansion of BM CD4+ cells, mainly caused by increasing T helper 2 (Th2) cells. Using a coculture model of BM T cells and hematopoietic stem/progenitor cells, we observed that BM CD4+ cells from hypoxic mice induced erythroid output more easily, in agreement with the erythroid-enhancing effect observed for Th2-condition-cultured BM CD4+ cells. It was further demonstrated that elevated secretion of activin A and interleukin-9 by BM Th2 cells of hypoxic mice promoted erythroid differentiation of hematopoietic stem/progenitor cells and the growth of erythroblasts, respectively. Our study also provided evidence that the CXCL12-CXCR4 interaction played an important role in Th2 cell trafficking to the BM under HA conditions. These results collectively suggest that Th2 cells migrating to the BM during HA exposure have a regulatory role in erythropoiesis, which provides new insight into the mechanism of high altitude polycythemia.


Subject(s)
Activins/metabolism , Bone Marrow/metabolism , Cell Movement , Erythropoiesis , Hypoxia/metabolism , Interleukin-9/metabolism , Polycythemia/metabolism , Th2 Cells/metabolism , Altitude , Altitude Sickness/metabolism , Altitude Sickness/pathology , Animals , Bone Marrow/pathology , Chemokine CXCL12/metabolism , Hypoxia/pathology , Male , Mice , Mice, Inbred BALB C , Polycythemia/pathology , Receptors, CXCR4/metabolism , Th2 Cells/pathology
14.
High Alt Med Biol ; 14(4): 338-41, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24377340

ABSTRACT

AIMS: Examined the change in neurobehavioral function of individuals acclimated to high altitudes and those native to high altitudes. METHODS: A neurobehavioral core test battery approved by the WHO (WHO-NCTB) was used to evaluate the effects of high altitude hypoxia on neurobehavioral function. The WHO-NCTB is composed of seven individual tests: a mood state profile, simple reaction time test, digit span test, Santa Ana manual dexterity test, digit symbol test, Benton visual retention test, and pursuit aiming test. RESULTS: The values from the Santa Ana manual dexterity test, digit symbol test, and pursuit aiming test from sea-level subjects acclimated for 5 days at 3700 m were significantly decreased when compared with the same subjects at sea level. The values from the digit span, Santa Ana manual dexterity, digit symbol, Benton visual retention and pursuit aiming tests in subjects native to high altitudes of 3700, 4500, and 5100 m were significantly decreased when compared with subjects at sea level and compared with sea-level subjects acclimated for 5 days at 3700 m. CONCLUSIONS: These results demonstrate that high altitude hypoxia induces damage to neurobehavioral functions, and the long-term deficit in neurobehavioral function was more severe than the short-term changes.


Subject(s)
Acclimatization/physiology , Altitude , Hypoxia/physiopathology , Neuropsychological Tests , Adolescent , Affect/physiology , Humans , Hypoxia/complications , Male , Memory, Short-Term/physiology , Motor Skills/physiology , Reaction Time/physiology , Time Factors , Young Adult
15.
Toxicon ; 55(2-3): 390-5, 2010.
Article in English | MEDLINE | ID: mdl-19744505

ABSTRACT

Patulin (PAT) is a mycotoxin produced by certain species of Penicillium and Aspergillus. The aim of this study was to assess PAT-induced DNA damage and to clarify the mechanisms, using human hepatoma G2 (HepG2) cells. PAT caused significant increase of DNA migration in single cell gel electrophoresis assay. To elucidate the role of glutathione (GSH), the intracellular GSH level was modulated by pre-treatment with buthionine-(S, R)-sulfoximine, a specific GSH synthesis inhibitor. It was observed that PAT significantly induced DNA damage in GSH-depleted HepG2 cells at lower concentrations. PAT induced the increased levels of reactive oxygen species and depletion of GSH in HepG2 cells using 2,7-dichlorofluorescein diacetate and 0-phthalaldehyde, respectively. PAT significantly increased the levels of 8-hydroxydeoxyguanosine and thiobarbituric acid-reactive substances in HepG2 cells. Also, PAT-induced p53 protein accumulation was observed in HepG2 cells, suggesting that the activation of p53 appeared to have been a downstream response to the PAT-induced DNA damage. These results demonstrate that PAT causes DNA strand breaks in HepG2 cells, probably through oxidative stress. Both GSH, as a main intracellular antioxidant, and p53 protein are responsible for cellular defense against PAT-induced DNA damage.


Subject(s)
DNA Damage , Genes, p53/drug effects , Mutagens/toxicity , Patulin/toxicity , 8-Hydroxy-2'-Deoxyguanosine , Blotting, Western , Cell Line, Tumor , Comet Assay , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Fluoresceins , Fluorescent Dyes , Glutathione/antagonists & inhibitors , Glutathione/biosynthesis , Glutathione/physiology , Humans , Immunoenzyme Techniques , Lipid Peroxidation/drug effects , Oxidation-Reduction , Oxidative Stress/drug effects , Phosphorylation , Reactive Oxygen Species/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
16.
Toxicon ; 53(5): 584-6, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19673104

ABSTRACT

Patulin (PAT), a mycotoxin produced by certain species of Penicillium, Aspergillus and Byssochlamys, is mainly found in ripe apple and apple products. In our present study, a significant increase of the micronuclei frequency induced by PAT was found in human hepatoma HepG2 cells. To elucidate the role of glutathione (GSH) in the effect, the intracellular GSH level was modulated by pre-treatment with buthionine-(S, R)-sulfoximine (BSO), a specific GSH synthesis inhibitor, and by pre-treatment with N-acetylcysteine (NAC), a GSH precursor. It was found that depletion of GSH in HepG2 cells with BSO dramatically increased the PAT-induced micronuclei frequencies and that when the intracellular GSH content was elevated by NAC, the chromosome damage induced by PAT was significantly prevented in our test concentrations (0.19-0.75 microM). These results indicate that GSH play an important role in cellular defense against PAT-induced genotoxicity.


Subject(s)
DNA Damage , Glutathione/metabolism , Patulin/toxicity , Cell Line , Cell Proliferation/drug effects , Glutathione/physiology , Glutathione Synthase/antagonists & inhibitors , Humans , Micronuclei, Chromosome-Defective
SELECTION OF CITATIONS
SEARCH DETAIL
...