Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(19): 11411-11423, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33949397

ABSTRACT

The mechanism of thermal decomposition and fire suppression, and the fire-extinguishing performance of HFO-1234yf, HCFO-1233xf and 2-BTP agents were investigated by using both experimental and theoretical methods. The different halogen atoms connected with the middle carbon atom result in the varied strength of C-X (X = F, Cl, Br) bonds, and thus different thermal stability of these agents, which could further affect the pyrolysis mechanism/products and the fire-extinguishing mechanism/performance of these agents. Owing to the generation of CF3˙, Cl˙ and Br˙ radicals, as well as some unsaturated small molecules produced by their pyrolysis, the HFO-1234yf, HCFO-1233xf and 2-BTP agents have minimum extinguishing concentrations (MECs) of 9.80 vol%, 7.28 vol% and 2.92 vol% (9.80 vol%, 7.28 vol% and 2.56 vol%) for suppressing propane-air (methane-air) flame, respectively, which are comparable to or even better than those of other hydrofluoroolefin (HFO) and hydrofluorocarbon (HFC) agents. Despite the contribution of directly produced Br˙ radicals, which have the lowest energy barrier and the highest efficiency in capturing free radicals, the Br˙ and CF3˙ radicals produced by the follow-up reactions with OH˙/H˙ radicals may also contribute a lot to the best fire-suppressing performance of 2-BTP. Due to the high reactivity of these unsaturated halogenated olefins and their pyrolysis products, exothermic reactions could occur between the original agents (or their pyrolysis products) and the OH˙/O: radicals, thus leading to the combustion-promotion effect of the HFO-1234yf, HCFO-1233xf and 2-BTP agents. The slightest combustion-promotion effect of the 2-BTP extinguishant may result from the easier generation and best performance of the Br˙ radicals, as well as the lowest energies released by the exothermic reactions.

2.
J Phys Chem A ; 124(28): 5944-5953, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32567315

ABSTRACT

In view of the appropriate physicochemical characteristics and environmental friendliness of the trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz(E)) substance, the thermal-decomposition mechanism as well as the fire-extinguishing mechanism and performance of this agent were systematically studied by employing both experimental and theoretical methods in this work. We found that the HFO-1336mzz(E) agent not only has promising thermal stability at room temperature but also exhibits pronounced fire-extinguishing performance, which is comparable to that of HFC-236fa and even better than that of HFC-125 extinguishant. Additionally, the promising fire-extinguishing performance of HFO-1336mzz(E) may result from the physical and chemical extinguishing effect of its thermal-decomposition products including HFO-1336mzz(Z), HC≡CCF3, CF3C≡CCF3, and CF3H, which makes a significant contribution to capturing the free radicals in the flame, as well as cooling and diluting the combustible fuel-air mixture. Both experimental and theoretical results suggest that the HFO-1336mzz(E) agent is a highly recommendable candidate for Halon extinguishant, which is worthy of further investigation and evaluation of its practical applicability in fire-suppression utilization.

3.
J Phys Condens Matter ; 31(12): 125301, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30645980

ABSTRACT

By employing particle-swarm optimization (PSO) and first-principles computations, we theoretically predicted five stable phases of graphene-like borocarbonitrides (g-BCN) with the stoichiometric ratio of 1:1:1 and uniformly distributed B, C, N atoms, which are the isoelectronic analogues of graphene. These g-BCN monolayers are effectively stabilized by their relatively high proportion of robust C-C or B-N bonds and strong partial ionic-covalent B-C and C-N bonds within them, leading to pronounced thermal and kinetic stability. The visible-light absorption and high carrier mobility of the investigated g-BCN monolayers indicate their possible applications in high-efficiency photochemical processes and electronic devices. Our computations could provide some guidance for designing the graphene-like materials with earth-abundant elements, as well as some clues for the experimental synthesis and practical applications of ternary BCN nanosheets.

SELECTION OF CITATIONS
SEARCH DETAIL
...