Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2313888, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488320

ABSTRACT

In this study, the fundamental but previously overlooked factors of charge generation efficiency and light extraction efficiency (LEE) are explored and collaboratively optimized in tandem quantum-dot light-emitting diodes (QLEDs). By spontaneously forming a microstructured interface, a bulk-heterojunction-like charge-generation layer composed of a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/ZnO bilayer is fabricated and an ideal charge-generation efficiency surpassing 115% is obtained. The coupling strength of the waveguide mode for the top unit and the plasmon polariton loss for the bottom unit are highly suppressed using precise thickness control, which increases the LEE of the tandem devices. The red tandem QLED achieves an exceptionally low turn-on voltage for electroluminescence at 4.0 V and outstanding peak external quantum efficiency of 42.9%. The ultralow turn-on voltage originates from the sequential electroluminescence turn-on of the two emissive units of the tandem QLED. Benefiting from its unique electroluminescent features, an easily fabricated optical-electrical dual anti-counterfeiting display is built by combining a dichromatic tandem QLED with masking technology.

2.
J Phys Chem Lett ; 15(6): 1726-1733, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38323848

ABSTRACT

Quantum-dot light-emitting diodes (QLEDs) with memory capability can provide multifunctional integration properties in on-chip and intelligent electronic applications. Herein, memory properties are achieved by inserting a tungsten oxide (WOx) film between the ZnO electron-transporting layer and cathode. Pentavalent tungsten ions (W5+) in this nonstoichiometric WOx film can be oxidized to W6+ by storing holes, inducing significant electrons in the adjacent ZnO layer. Hole storage in the WOx layer suppresses electron injection into the quantum dot emissive layer, hence reducing electroluminescence intensity on the onset stage of the QLEDs. This operation-history correlation for the electroluminescence intensity means a memory behavior for the QLEDs. Furthermore, the power efficiency of the devices is greatly improved after inserting the WOx layer due to electrical field-dependent self-adaptive electron injection into the quantum dots (QDs). We anticipate this type of QLEDs have potential applications in on-chip integration applications, such as the optical computing field and storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...