Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
Sci Rep ; 14(1): 16152, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997295

ABSTRACT

Despite extensive research on the relationship between choline and cardiovascular disease (CVD), conflicting findings have been reported. We aim to investigate the relationship between choline and CVD. Our analysis screened a retrospective cohort study of 14,663 participants from the National Health and Nutrition Examination Survey conducted between 2013 and 2018. Propensity score matching and restricted cubic splines was used to access the association between choline intake and the risk of CVD. A two-sample Mendelian randomization (MR) analysis was conducted to examine the potential causality. Additionally, sets of single cell RNA-sequencing data were extracted and analyzed, in order to explore the role of choline metabolism pathway in the progression and severity of the CVD and the underlying potential mechanisms involved. The adjusted odds ratios and 95% confidence intervals for stroke were 0.72 (0.53-0.98; p = 0.035) for quartile 3 and 0.54 (0.39-0.75; p < 0.001) for quartile 4. A stratified analysis revealed that the relationship between choline intake and stroke varied among different body mass index and waist circumference groups. The results of MR analysis showed that choline and phosphatidylcholine had a predominantly negative causal effect on fat percentage, fat mass, and fat-free mass, while glycine had opposite effects. Results from bioinformatics analysis revealed that alterations in the choline metabolism pathway following stroke may be associated with the prognosis. Our study indicated that the consumption of an appropriate quantity of choline in the diet may help to protect against CVD and the effect may be choline-mediated, resulting in a healthier body composition. Furthermore, the regulation of the choline metabolism pathway following stroke may be a promising therapeutic target.


Subject(s)
Body Composition , Cardiovascular Diseases , Choline , Humans , Choline/administration & dosage , Choline/metabolism , Male , Female , Middle Aged , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/metabolism , Retrospective Studies , Mendelian Randomization Analysis , Adult , Body Mass Index , Aged , Nutrition Surveys , Risk Factors , Stroke/metabolism , Stroke/prevention & control
3.
Neurol Ther ; 13(4): 1259-1271, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914793

ABSTRACT

INTRODUCTION: Intracerebral hemorrhage (ICH) is a severe manifestation of stroke, demonstrating notably elevated global mortality and morbidity. Thus far, effective therapeutic strategies for ICH have proven elusive. Currently, minimally invasive techniques are widely employed for ICH management, particularly using endoscopic hematoma evacuation in cases of deep ICH. Exploration of strategies to achieve meticulous surgery and diminish iatrogenic harm, especially to the corticospinal tract, with the objective of enhancing the neurological prognosis of patients, needs further efforts. METHODS: We comprehensively collected detailed demographic, clinical, radiographic, surgical, and postoperative treatment and recovery data for patients who underwent endoscopic hematoma removal. This thorough inclusion of data intends to offer a comprehensive overview of our technical experience in this study. RESULTS: One hundred fifty-four eligible patients with deep supratentorial intracerebral hemorrhage who underwent endoscopic hematoma removal were included in this study. The mean hematoma volume was 42 ml, with 74 instances of left-sided hematoma and 80 cases of right-sided hematoma. The median Glasgow Coma Scale (GCS) score at admission was 10 (range from 4 to 15), and the median time from symptom onset to surgery was 18 (range 2 to 96) h. The mean hematoma clearance rate was 89%. The rebleeding and mortality rates within 1 month after surgery were 3.2% and 7.8%, respectively. At the 6-month mark, the proportion of patients with modified Rankin Scale (mRS) scores of 0-3 was 58.4%. CONCLUSION: Both the reduction of surgery-related injury and the protection of the residual corticospinal tract through endoscopic hematoma removal may potentially enhance neurological functional outcomes in patients with deep ICH, warranting validation in a forthcoming multicenter clinical study.

4.
Research (Wash D C) ; 7: 0355, 2024.
Article in English | MEDLINE | ID: mdl-38694202

ABSTRACT

Proper timing of vigilance states serves fundamental brain functions. Although disturbance of sleep onset rapid eye movement (SOREM) sleep is frequently reported after orexin deficiency, their causal relationship still remains elusive. Here, we further study a specific subgroup of orexin neurons with convergent projection to the REM sleep promoting sublaterodorsal tegmental nucleus (OXSLD neurons). Intriguingly, although OXSLD and other projection-labeled orexin neurons exhibit similar activity dynamics during REM sleep, only the activation level of OXSLD neurons exhibits a significant positive correlation with the post-inter-REM sleep interval duration, revealing an essential role for the orexin-sublaterodorsal tegmental nucleus (SLD) neural pathway in relieving REM sleep pressure. Monosynaptic tracing reveals that multiple inputs may help shape this REM sleep-related dynamics of OXSLD neurons. Genetic ablation further shows that the homeostatic architecture of sleep/wakefulness cycles, especially avoidance of SOREM sleep-like transition, is dependent on this activity. A positive correlation between the SOREM sleep occurrence probability and depression states of narcoleptic patients further demonstrates the possible significance of the orexin-SLD pathway on REM sleep homeostasis.

5.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38729764

ABSTRACT

Intracerebral hemorrhage (ICH), the most common subtype of hemorrhagic stroke, leads to cognitive impairment and imposes significant psychological burdens on patients. Hippocampal neurogenesis has been shown to play an essential role in cognitive function. Our previous study has shown that tetrahydrofolate (THF) promotes the proliferation of neural stem cells (NSCs). However, the effect of THF on cognition after ICH and the underlying mechanisms remain unclear. Here, we demonstrated that administration of THF could restore cognition after ICH. Using Nestin-GFP mice, we further revealed that THF enhanced the proliferation of hippocampal NSCs and neurogenesis after ICH. Mechanistically, we found that THF could prevent ICH-induced elevated level of PTEN and decreased expressions of phosphorylated AKT and mTOR. Furthermore, conditional deletion of PTEN in NSCs of the hippocampus attenuated the inhibitory effect of ICH on the proliferation of NSCs and abnormal neurogenesis. Taken together, these results provide molecular insights into ICH-induced cognitive impairment and suggest translational clinical therapeutic strategy for hemorrhagic stroke.


Subject(s)
Cognitive Dysfunction , Hippocampus , Neural Stem Cells , Neurogenesis , PTEN Phosphohydrolase , Signal Transduction , Tetrahydrofolates , Animals , Neurogenesis/drug effects , Neurogenesis/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , PTEN Phosphohydrolase/metabolism , Male , Signal Transduction/drug effects , Signal Transduction/physiology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Tetrahydrofolates/pharmacology , Mice , Hemorrhagic Stroke , Mice, Inbred C57BL , Mice, Transgenic , Cell Proliferation/drug effects
6.
Redox Biol ; 71: 103086, 2024 May.
Article in English | MEDLINE | ID: mdl-38367510

ABSTRACT

Hemorrhagic stroke, specifically intracerebral hemorrhage (ICH), has been implicated in the development of persistent cognitive impairment, significantly compromising the quality of life for affected individuals. Nevertheless, the precise underlying mechanism remains elusive. Here, we report for the first time that the accumulation of iron within the hippocampus, distal to the site of ICH in the striatum, is causally linked to the observed cognitive impairment with both clinical patient data and animal model. Both susceptibility-weighted imaging (SWI) and quantitative susceptibility mapping (QSM) demonstrated significant iron accumulation in the hippocampus of ICH patients, which is far from the actual hematoma. Logistical regression analysis and multiple linear regression analysis identified iron level as an independent risk factor with a negative correlation with post-ICH cognitive impairment. Using a mouse model of ICH, we demonstrated that iron accumulation triggers an excessive activation of neural stem cells (NSCs). This overactivation subsequently leads to the depletion of the NSC pool, diminished neurogenesis, and the onset of progressive cognitive dysfunction. Mechanistically, iron accumulation elevated the levels of reactive oxygen species (ROS), which downregulated the expression of Itga3. Notably, pharmacological chelation of iron accumulation or scavenger of aberrant ROS levels, as well as conditionally overexpressed Itga3 in NSCs, remarkably attenuated the exhaustion of NSC pool, abnormal neurogenesis and cognitive decline in the mouse model of ICH. Together, these results provide molecular insights into ICH-induced cognitive impairment, shedding light on the value of maintaining NSC pool in preventing cognitive dysfunction in patients with hemorrhagic stroke or related conditions.


Subject(s)
Cognitive Dysfunction , Hemorrhagic Stroke , Neural Stem Cells , Animals , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Hemorrhagic Stroke/metabolism , Hippocampus/metabolism , Iron/metabolism , Neural Stem Cells/metabolism , Quality of Life , Reactive Oxygen Species/metabolism , Mice
7.
Int J Stroke ; 19(5): 587-592, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38291017

ABSTRACT

BACKGROUND: Neuroendoscopy is a minimally invasive procedure for clot evacuation in intracerebral hemorrhage (ICH) which may have advantages compared with open surgical evacuation procedures. The application of neuroendoscopy in ICH has attracted increasing attention in recent years. However, it remains unclear whether it could improve outcomes in patients with ICH. OBJECTIVE: The aim of this study is to explore the efficacy and safety of neuroendoscopic hematoma evacuation surgery compared with standard conservative treatment for spontaneous deep supratentorial cerebral hemorrhage. METHODS: The Efficacy and safety of NeuroEndoscopic Surgery for IntraCerebral Hemorrhage (NESICH) Trial is a multicenter, randomized, controlled, open-label, blinded-endpoint clinical trial. Up to 560 eligible subjects with acute deep supratentorial ICH will be randomly assigned (1:1) to receive either neuroendoscopic hematoma evacuation or standard conservative treatment at more than 30 qualified neurosurgery centers in China. OUTCOMES: The primary endpoint is the proportion of patients with a good functional outcome (mRS score 0-3) in both groups at 180 days after onset. The main safety endpoints include all-cause mortality at 7, 30, and 180 days, rebleeding at 3, 7, and 30 days, and serious complications within 180 days. DISCUSSION: NESICH will provide high-quality evidence for the efficacy and safety of neuroendoscopic hematoma evacuation surgery in ICH patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT05539859.


Subject(s)
Cerebral Hemorrhage , Neuroendoscopy , Adult , Aged , Female , Humans , Male , Middle Aged , Cerebral Hemorrhage/surgery , Hematoma/surgery , Neuroendoscopy/methods , Neuroendoscopy/adverse effects , Single-Blind Method , Treatment Outcome , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
8.
Research (Wash D C) ; 6: 0105, 2023.
Article in English | MEDLINE | ID: mdl-37275123

ABSTRACT

Cell replacement therapy using neural progenitor cells (NPCs) has been shown to be an effective treatment for ischemic stroke. However, the therapeutic effect is unsatisfactory due to the imbalanced homeostasis of the local microenvironment after ischemia. Microenvironmental acidosis is a common imbalanced homeostasis in the penumbra and could activate acid-sensing ion channels 1a (ASIC1a), a subunit of proton-gated cation channels following ischemic stroke. However, the role of ASIC1a in NPCs post-ischemia remains elusive. Here, our results indicated that ASIC1a was expressed in NPCs with channel functionality, which could be activated by extracellular acidification. Further evidence revealed that ASIC1a activation inhibited NPC migration and neurogenesis through RhoA signaling-mediated reorganization of filopodia formation, which could be primarily reversed by pharmacological or genetic disruption of ASIC1a. In vivo data showed that the knockout of the ASIC1a gene facilitated NPC migration and neurogenesis in the penumbra to improve behavioral recovery after stroke. Subsequently, ASIC1a gain of function partially abrogated this effect. Moreover, the administration of ASIC1a antagonists (amiloride or Psalmotoxin 1) promoted functional recovery by enhancing NPC migration and neurogenesis. Together, these results demonstrate targeting ASIC1a is a novel strategy potentiating NPC migration toward penumbra to repair lesions following ischemic stroke and even for other neurological diseases with the presence of niche acidosis.

9.
Bioact Mater ; 27: 1-14, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37006825

ABSTRACT

Intracerebral hemorrhage (ICH), as a type of life-threatening and highly disabled disease, has limited therapeutic approaches. Here, we show that exosomes derived from young healthy human plasma exhibiting typical exosomes features could facilitate functional recovery of ICH mice. When these exosomes are intraventricularly delivered into the brain after ICH, they mainly distribute around the hematoma and could be internalized by neuronal cells. Strikingly, exosomes administration markedly enhanced the behavioral recovery of ICH mice through reducing brain injury and cell ferroptosis. MiRNA sequencing revealed that microRNA-25-3p (miR-25-3p) was differentially expressed miRNA in the exosomes from young healthy human plasma, compared with exosomes from the old control. Importantly, miR-25-3p mimicked the treatment effect of exosomes on behavioral improvement, and mediated the neuroprotective effect of exosomes against ferroptosis in ICH. Furthermore, luciferase assay and western blotting data illustrated that P53 as assumed the role of a downstream effector of miR-25-3p, thereby regulating SLC7A11/GPX4 pathway to counteract ferroptosis. Taken together, these findings firstly reveal that exosomes from young healthy human plasma improve functional recovery through counteracting ferroptotic injury by regulating P53/SLC7A11/GPX4 axis after ICH. Given the easy availability of plasma exosomes, our study provides a potent therapeutic strategy for ICH patients with quick clinical translation in the near future.

10.
J Integr Neurosci ; 22(6): 171, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38176920

ABSTRACT

BACKGROUND: White matter injury (WMI) in basal ganglia usually induces long-term disability post intracerebral hemorrhage (ICH). Kv1.3 is an ion channel expressed in microglia and induces neuroinflammation after ICH. Here, we investigated the functions and roles of Kv1.3 activation-induced inflammatory response in WMI and the Kv1.3 blockade effect on microglia polarization after ICH. METHODS: Mice ICH model was constructed by autologous blood injection. The expression of Kv1.3 was measured using immunoblot, real-time quantitative polymerase chain reaction (RT-qPCR), and immunostaining assays. Then, the effect of administration of 5-(4-Phenoxybutoxy) psoralen (PAP-1), a selectively pharmacological Kv1.3 blocker, was investigated using open field test (OFT) and basso mouse score (BMS). RT-qPCR, immunoblot, and enzyme-linked immunosorbent assay (ELISA) were taken to elucidate the expression of pro-inflammatory or anti-inflammatory factors around hematoma. PAP-1's function in regulating microglia polarization was investigated using immunoblot, RT-qPCR, and immunostaining assays. The downstream PAP-1 signaling pathway was determined by RT-qPCR and immunoblot. RESULTS: Kv1.3 expression was increased in microglia around the hematoma significantly after ICH. PAP-1 markedly improved neurological outcomes and the WMI by reducing pro-inflammatory cytokine accumulation and upregulating anti-inflammatory factors. Mechanistically, PAP-1 reduces NF-κB p65 and p50 activation, thus facilitating microglia polarization into M2-like microglia, which exerts this beneficial effect. CONCLUSIONS: PAP-1 reduced pro-inflammatory cytokines accumulation and increased anti-inflammatory factors by facilitating M2-like microglia polarization via the NF-κB signaling pathway. Thus, the current study shows that the Kv1.3 blockade is capable of ameliorating WMI by facilitating M2-like phenotype microglia polarization after ICH.


Subject(s)
Brain Injuries , Kv1.3 Potassium Channel , White Matter , Animals , Mice , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Cytokines/metabolism , Hematoma , NF-kappa B/metabolism , Phenotype , Signal Transduction/physiology , Kv1.3 Potassium Channel/antagonists & inhibitors
11.
J Pestic Sci ; 47(2): 59-68, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35800396

ABSTRACT

The effects of external factors such as temperature, humidity, pesticide formulation, and pesticide concentration on the contact angle of pesticide droplets on rice leaf surfaces were analyzed. The experiments showed that there were significant differences in the contact angles of droplets on the leaf surfaces under different temperatures and humidity. As the ambient temperature increased, the contact angle first decreased and then increased, reaching a minimum value at 25°C. With a gradual increase in humidity, the contact angle significantly increased and reached a maximum at 100% humidity. Finally, it was concluded that both the formulation and concentration of the pesticide had a significant effect on the contact angle of droplets on rice leaf surfaces. The experiments also illustrated that the effects of the pesticide formulation and concentration on the contact angle were more significant than those of temperature and humidity.

12.
Oxid Med Cell Longev ; 2022: 9021474, 2022.
Article in English | MEDLINE | ID: mdl-35265266

ABSTRACT

Neural stem cell (NSC) proliferation is the initial step for NSC participating in neurorehabilitation after central nervous system (CNS) injury. During this process, oxidative stress is always involved in restricting the regenerative ability of NSC. Tetrahydrofolate (THF) is susceptible to oxidative stress and exhibits a high antioxidant activity. While its effect on NSC proliferation under oxidative stress condition remains obscure. Here, NSC were isolated from embryonic mice and identified using immunofluorescent staining. Meanwhile, the results showed that THF (5 µM and 10 µM) attenuated oxidative stress induced by 50 µM hydrogen peroxide (H2O2) in NSC using mitochondrial hydroxyl radical detection and Western blotting assays. Afterward, administration of THF markedly alleviated the inhibitory effect of oxidative stress on NSC proliferation, which was evidenced by Cell Counting Kit-8 (CCK8), neurosphere formation, and immunofluorescence of Ki67 assays. Thereafter, the results revealed that PTEN/Akt/mTOR signaling pathway played a pivotal role in counteracting oxidative stress to rescue the inhibitory effect of oxidative stress on NSC proliferation using Western blotting assays and gene knockdown techniques. Collectively, these results demonstrate that THF mitigates the inhibitory effect of oxidative stress on NSC proliferation via PTEN/Akt/mTOR signaling pathway, which provides evidence for administrating THF to potentiate the neuro-reparative capacity of NSC in the treatment of CNS diseases with the presence of oxidative stress.


Subject(s)
Neural Stem Cells/metabolism , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Tetrahydrofolates/therapeutic use , Vitamin B Complex/therapeutic use , Animals , Cell Proliferation , Humans , Mice , Oxidative Stress , Tetrahydrofolates/pharmacology , Vitamin B Complex/pharmacology
13.
Front Oncol ; 11: 693693, 2021.
Article in English | MEDLINE | ID: mdl-34490090

ABSTRACT

Both subventricular zone (SVZ) contact and isocitrate dehydrogenase 1 (IDH1) mutation have been reported to be related to the outcome of glioma, respectively. However, far too little attention has been paid to the role of tumor edge-SVZ distance in the outcome of glioma. We aim to assess the value of tumor-SVZ distance, as well as combined tumor-SVZ distance and IDH status, in predicting the outcome of gliomas (WHO grade II-IV). Here, the MR images and clinical data from 146 patients were included in the current study. The relationship between survival and the tumor-SVZ distance as well as survival and combination of tumor-SVZ distance and IDH status were determined via univariate and multivariate analyses. In univariate analysis of tumor-SVZ distance, the patients were divided into three types (SVZ involvement, tumor-SVZ distance from 0 to 10 mm, and tumor-SVZ distance >10 mm). The results showed that the OS (p = 0.02) and PFS (p = 0.002) for the patients had a positive correlation with the tumor-SVZ distance. In addition, simple linear correlation found a significant relationship between the two parameters (OS and PFS) and tumor-SVZ distance in patients with non-SVZ-contacting glioma. Combination analysis of the tumor-SVZ distance and IDH status showed that IDH1 mutation and SVZ non-involvement enable favorable outcomes, whereas IDH1 wild type with SVZ involvement indicates a significantly worse prognosis in all patients. Moreover, in patients with non-SVZ-contacting glioma, IDH1 mutation concurrent with tumor-SVZ distance >10 mm has better OS and PFS. IDH1 wild type and tumor-SVZ distance from 0 to 10 mm suggest poorer OS and PFS. Multivariate analysis showed WHO grade IV, SVZ involvement, tumor-SVZ distance from 0 to 10 mm, IDH1 mutation, gross total resection, and chemotherapy serve as independent predictors of OS. WHO grade IV, SVZ involvement, tumor-SVZ distance from 0 to 10 mm, IDH1 mutation, and chemotherapy serve as independent predictors of PFS of patients with glioma. In conclusion, tumor-SVZ distance and IDH1 mutation status are the determinants affecting patient outcome.

14.
Neuropsychiatr Dis Treat ; 17: 355-363, 2021.
Article in English | MEDLINE | ID: mdl-33603374

ABSTRACT

BACKGROUND: Inflammation plays an essential role in secondary brain injury after intracerebral hemorrhage (ICH). Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) have been suggested to suppress neuroinflammation after central nervous system (CNS) damage in animal models. However, the role of ACEIs and ARBs in ICH patients with hypertension remains unresolved in clinic. The aim of the present study is to evaluate the effect of ACEIs/ARBs on ICH patients with hypertension using a retrospective, single-center data analysis. METHODS: ICH patients diagnosed by computerized tomographic (CT) at Southwest Hospital, Third Military Medical University were included in the present research from January 2015 to December 2019. According to the medical history for the usage of antihypertensive drugs, patients were assigned into either ACEIs/ARBs group or non-ACEIs/ARBs group. Demographics, clinical baseline, radiological documents and treatments were collected and these data were statistically analyzed between the two groups. RESULTS: A total of 635 ICH patients with hypertension were included and allocated into 2 groups according to the usage of antihypertensive drugs: 281 in the ACEIs/ARBs group and 354 in the non-ACEIs/ARBs group. The results presented that the 3-months mortality and prevalence of ICH-associated pneumonia were lower in ACEIs/ARBs group than that in non-ACEIs/ARBs group (5.0% vs 11.9%, p=0.002; 58.4% vs 66.7%, p=0.031). While, there was no significant difference in favorable outcome (40.2% vs 33.9%, p=0.101) between the two groups. Furthermore, patients in ACEIs/ARBs group exhibited significantly less perihematomal edema volume on days 3 (23.5 ± 14.4 versus 28.7 ± 20.1 mL, p=0.045) and 7 (21.0 ± 13.7 versus 25.7 ± 17.6 mL, p=0.044), compared to that in non- ACEIs/ARBs group. CONCLUSION: The usage of ACEIs/ARBs helps decrease mortality, perihematomal edema volume, and prevalence of ICH-associated pneumonia in ICH patients with hypertension.

15.
Appl Spectrosc ; 71(8): 1808-1815, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28436680

ABSTRACT

We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...