Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 52(13): 3921-3941, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36939177

ABSTRACT

Perovskite nanomaterials have been highly thought as next-generation light emitters after recent development owing to their benefits of simple synthesis, low-cost, large-area, and wide color gamut. Encouragingly, the external quantum efficiencies (EQEs) of green, red, and near-infrared perovskite light-emitting diodes (PeLEDs) have exceeded more than 20%. However, the performance of the blue PeLEDs is still lower than other analogs, which severely limits the applications of PeLEDs in future full-color displays. Herein, we have reviewed the advances in blue perovskite NCs and their applications in blue PeLEDs. Promising blue perovskite emitters and strategies for fabricating highly efficient blue PeLEDs based on perovskite NCs are investigated and highlighted. Moreover, we point out the main challenges in blue perovskite NC LEDs including low electroluminescence efficiency (EL), spectral instability, the difficulty of charge injection, and device optimization. The perspectives for the further development of blue PeLEDs are also presented.

2.
ACS Appl Mater Interfaces ; 14(14): 16404-16412, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35352552

ABSTRACT

Perovskite light-emitting diodes (PeLEDs) are promising candidates used for superthin emissive displays with high resolution, high brightness, and wide color gamut, but the CsPbI3 nanocrystal (NC) based ones usually have an external quantum efficiency (EQE) of less than 20%, which needs further enhancement to minimize the gap between their counterparts. Herein, we propose to improve optical properties of the CsPbI3:Sr emissive layer (EML) by inserting an additional potassium iodide (KI) passivation layer between the hole transport layer and EML to increase the film quality, photoluminescence quantum yield, and thermal stability of the EML. The KI layer can also increase the carrier mobility to balance the charge injection in PeLEDs, leading to a reduction in Auger recombination and Joule heating. An interesting deep-red-emitting PeLED (λem = 687 nm) with a record EQE of 21.8% and a lifetime T50 of 69 min is obtained by applying the additional KI passivation layer. Moreover, a flexible PeLED consisting of the KI layer is also demonstrated to have a record EQE of 12.7%. These results indicate that the use of a functional KI layer is a feasible way to develop high-performance electroluminescent devices.

3.
Small Methods ; 5(3): e2000889, 2021 03.
Article in English | MEDLINE | ID: mdl-34927832

ABSTRACT

Inkjet-printed perovskite quantum dot (PQD) color conversion films (CCFs) have great potentials for mini/micro-LED displays because of their ultrahigh color purity, tunable emissions, high efficiency, and high-resolution. However, current PQD inks mainly use expensive, toxic, and flammable organic substances as solvents. In this work, water is proposed to be used as the solvent for inkjet printing PQD/polymer CCFs. The green-emitting patterned MAPbBr3 /polyvinyl alcohol (PVA) films are in situ prepared by using halides and the PVA-based aqueous ink. The as-printed CCFs exhibit a high-resolution dot matrix of 90 µm with a bright green emission (λem  = 526 nm), a high photoluminescence quantum yield of 85%, and a narrow full width at half maximum of 22 nm. They have both air- and photo-stabilities under ambient conditions, and each pixel of CCFs is relatively uniform in morphology and fluorescence when the substrate temperature is 80 °C. The patterned blue-emitting MAPbClx Br3-x /PVA and red-emitting Cs0.3 MA0.7 PbBrx I3-x /PVA can also be printed by aqueous inks. These results indicate that the designed aqueous inks are promising for in situ inkjet printing high resolution and reliability PQD CCFs for mini/micro-LED displays.

4.
ACS Appl Mater Interfaces ; 13(25): 29827-29834, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34142800

ABSTRACT

MAPbI3, one of the archetypical metal halide perovskites, is an exciting semiconductor for a variety of optoelectronic applications. The photoexcited charge-carrier diffusion and recombination are important metrics in optoelectronic devices. Defects in grain interiors and boundaries of MAPbI3 films cause significant nonradiative recombination energy losses. Besides defect impact, carrier diffusion and recombination anisotropy introduced by structural and electronic discrepancies related to the crystal orientation are vital topics. Here, large-sized MAPbI3 single crystals (SCs) were grown, with the (110), (112), (100), and (001) crystal planes simultaneously exposed through the adjusting ratios of PbI2 to methylammonium iodide (MAI). Such MAPbI3 SCs exhibit a weak n-type semiconductor character, and the Fermi levels of these planes were slightly different, causing a homophylic p-n junction at crystal ledges. Utilizing MAPbI3 SCs, the photoexcited carrier diffusion and recombination within the crystal planes and around the crystal ledges were investigated through time-resolved fluorescence microscope. It is revealed that both the (110) and (001) planes were facilitated to be exposed with more MAI in the growth solutions, and the photoluminescence (PL) of these planes manifesting a red-shift, longer carrier lifetime, and diffusion length compared with the (100) and (112) planes. A longer carrier diffusion length promoted photorecycling. However, excessive MAI-assisted grown MAPbI3 SCs could increase the radiative recombination. In addition, it revealed that the carrier excited within the (001) and (112) planes was inclined to diffuse toward each other and was favorable to be extracted out of the grain boundaries or crystal ledges.

5.
J Phys Chem Lett ; 12(7): 1904-1910, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33591752

ABSTRACT

The fully inorganic perovskite lead cesium bromide single crystal (CsPbBr3 SC) is considered as an excellent candidate semiconductor for photodetectors because of its superior humidity resistance, thermal stability, and light stability compared with organic-inorganic hybrid perovskites as well as its photoelectric properties such as large light absorption coefficient and ultralong carrier migration distance. In this Letter, we utilize the inverse temperature solubility of CsPbBr3 in ternary solvents to grow large-sized CsPbBr3 SCs. By the use of the (101) plane, CsPbBr3 SC-based photodetectors are fabricated, which exhibit excellent polarized light response characteristics. The photocurrent relies on the polarization angle in a sinusoidal fashion and shows strong anisotropic optoelectronic properties. The photodetection performance perpendicular to the y axis is significantly higher than that parallel to the y axis, and the dichroic ratio under 405 nm illumination at a bias voltage of 1 V reaches 2.65. The experimental results are consistent with the results of first-principles calculations.

6.
J Phys Chem Lett ; 11(23): 10164-10172, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33196191

ABSTRACT

Low-dimensional metal halide hybrids (OIMHs) have recently been explored as single-component white-light emitters for use in solid-state lighting. However, it still remains challenging to realize tunable white-light emission in lead-free zero-dimensional (0D) hybrid system. Here, a combination strategy has been proposed through doping Sb3+ enabling and balancing multiple emission centers toward the multiband warm white light. We first synthesized a new lead-free 0D (C8NH12)6InBr9·H2O single crystal, in which isolated [InBr6]3- octahedral units are separated by large organic cations [C8NH12]+. (C8NH12)6InBr9·H2O exhibits dual-band emissions with one intense cyan emission and a weak red emission tail. The low-energy ultrabroadband red emission tail can be greatly enhanced by the Sb3+ doping. Experimental data and first-principles calculations reveal that the original dominant cyan emission is originated from the organic cations [C8NH12]+ and that the broadband red emission is ascribed to self-trapped excitons in [In(Sb)Br6]3-. When the Sb concentration is 0.1%, a single-component warm white-light emission with a photoluminescence quantum efficiency of 23.36%, correlated color temperature of 3347 K, and a color rendering index up to 84 can be achieved. This work represents a significant step toward the realization of single-component white-light emissions in environmental-friendly, high-performance 0D metal halide light-emitting materials.

7.
Phys Chem Chem Phys ; 22(25): 14276-14283, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32555919

ABSTRACT

Zero-dimensional (0D) inorganic perovskites, particularly Cs4PbBr6, have been attracting wide attention due to their excellent photoluminescence (PL) efficiency and spectral color purity. The PL origin of Cs4PbBr6 and the underlying photophysics, however, draw intense debate and remain controversial. Revealing the photo-excited carrier generation, separation, and recombination, as well as the roles that mobile ions play, is crucial and helpful to deeply understand the photo-physical property. Photoconductivity is one of the effective approaches to closely explore the photophysics. In this study, high-purity Cs4PbBr6 single crystals were grown from Cs-enriched solutions. Negative photoconductivity was first observed in Cs4PbBr6 through Au-crystal-Au photo-detectors, and the photocurrents under high illumination power are similar to those of the diode. It is considered that the built-in electric field produced by the charged excitons combined by the neutral excitons and vacancies of Br (VBr+) are responsible for the eccentric negative photoconductivity phenomena because of strong Coulomb interactions and low VBr+ formation energy in Cs4PbBr6.

8.
Nanoscale ; 11(14): 6584-6590, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30601528

ABSTRACT

Carbon dots (CDs) with tunable emission colors and multiple emission modes are highly desirable in advanced optical anti-counterfeiting. Some pioneering efforts to trigger additional long-lived emission modes, nevertheless, did not perfectly solve the issue of printability and color-tunability in practical applications. Herein, we developed an encapsulating-dissolving-recrystallization route for the synthesis of CD-based anti-counterfeiting inks, and accordingly realized blue, green, and red full-color afterglow emissions from these CD-based inks when printed on paper. The printed inks simultaneously possessed triple emission modes including fluorescence (FL), delayed fluorescence (DF), and room-temperature phosphorescence (RTP), among which the long-lived emissions (DF and RTP) could be selectively activated by using different excitation wavelengths. We believe that the proposed synthetic route in this work may promote the development of multicolor-encoded and multiple-mode-integrated optical anti-counterfeiting systems, and will expand the application of CD-based materials to the fields of sensing, photodynamic therapy and bio-imaging.

9.
ACS Appl Mater Interfaces ; 11(2): 2130-2139, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30565456

ABSTRACT

Transparent ceramics (TCs) are promising for high-power (hp) white light-emitting diode (WLED) and laser diode (LD) lighting. However, comfortable warm white light has not been achieved only using a single TC in hp-WLEDs/LDs. Herein, highly transparent Gd3Al4GaO12:Ce3+ (GAGG:Ce3+) TCs (transmittance, T = 55.9-80.2%) were prepared via a solid-state reaction. Ce3+ as a doped activator center in grains plays a positive role in luminescence based on the microstructural investigations by scanning electron microscopy and the cathodoluminescence system. T decreases upon increasing the Ce3+ concentration and/or the ceramic thickness, whereas the luminous efficacy of hp-WLEDs/LDs goes up. For blue hp-LEDs driven at 350 mA or LDs of 2 W, warm white light with a low correlated-color temperature of ∼3000 K was achieved by a single GAGG:Ce3+ TC, benefiting from its broad emission band (full width at half maximum, FWHM = 133-137 nm) and abundant red components (peaking at about 568-574 nm). The color-rendering index of hp-WLEDs reaches 78.9. These results are much better than the performance of the traditional Y3Al5O12:Ce3+ (YAG:Ce3+) TC, indicating that GAGG:Ce3+ TCs are promising color converters for hp-WLEDs/LDs with a comfortable warm white light.

10.
ACS Appl Mater Interfaces ; 11(2): 1907-1916, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30566326

ABSTRACT

Multifunctional theranostic nanoplatforms greatly improve the accuracy and effectiveness in tumor treatments. Much effort has been made in developing advanced optical imaging-based tumor theranostic nanoplatforms. However, autofluorescence and irradiation damage of the conventional fluorescence imaging technologies as well as unsatisfied curative effects of the nanoplatforms remain great challenges against their wide applications. Herein, we constructed a novel core-shell multifunctional nanoplatform, that is, chromium-doped zinc gallogermanate (ZGGO) near-infrared (NIR) persistent luminescent nanoparticles (PLNPs) as a core and zeolitic imidazolate framework-8 (ZIF-8) as a shell (namely ZGGO@ZIF-8). The ZGGO@ZIF-8 nanoplatform possessed dual functionalities of the autofluorescence-free NIR PersL imaging as well as the pH-responsive drug delivery, thus it has high potential in tumor theranostics. Notably, the loading content of doxorubicin (DOX) in ZGGO@ZIF-8 (LC = 93.2%) was quite high, and the drug release of DOX-loaded ZGGO@ZIF-8 was accelerated in an acidic microenvironment such as tumor cells. The ZGGO@ZIF-8 opens up a new material system in the combination of PLNPs with metal-organic frameworks and may offer new opportunities for the development of advanced multifunctional nanoplatforms for tumor theranostics, chemical sensing, and optical information storage.


Subject(s)
Doxorubicin , Metal-Organic Frameworks , Nanoparticles , Neoplasms , Zeolites , Chromium/chemistry , Chromium/pharmacokinetics , Chromium/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Humans , Hydrogen-Ion Concentration , MCF-7 Cells , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacokinetics , Metal-Organic Frameworks/pharmacology , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Zeolites/chemistry , Zeolites/pharmacokinetics , Zeolites/pharmacology , Zinc/chemistry , Zinc/pharmacokinetics , Zinc/pharmacology
11.
Nanoscale ; 10(45): 21441-21450, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30427017

ABSTRACT

All-inorganic lead halide perovskite quantum dots (PQDs) have shown great promise for optoelectronic applications due to their unique optical and electrical properties. However, their poor stability against moisture, UV light or thermal attacks greatly hinders their practical applications. One of the reasons for this instability is the proton transfer between oleic acid (OA) and oleylamine (OLA), which induces serious ligand loss. The idea of this work is to prevent the interligand proton transfer by replacing OLA with cetyl trimethylammonium bromide (CTAB) that cannot be protonated. The synthesized CsPbBr3 PQDs in solution show high photoluminescence quantum yields up to 71% and also exhibit higher stability against acetone than the counterparts synthesized using oleylammonium bromide (OLABr). Subsequently, CsPbBr3 PQDs with a peak wavelength of 515 nm (g-CsPbBr3) synthesized using CTAB are further composited with a polymer of carboxyl-functionalized polystyrene (cPS). The composite shows enhanced thermal and moisture stability. It is demonstrated that this green-emitting composite can produce high color gamut (130%) white light-emitting diodes when combined with the K2SiF6:Mn4+ phosphor and a blue InGaN chip, enabling its use in display backlights.

12.
J Phys Chem Lett ; 9(19): 5833-5839, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30251863

ABSTRACT

Organic-inorganic hybrid methylammonium lead iodide perovskite (MAPbI3) has attracted extensive attention in a series of optoelectronic devices. The photoelectric properties of the MAPbI3 single crystal have been revealed to be much better than those of it polycrystalline counterparts. However, its poor moisture and heat resistance severely limited further development. The introduction of Cs+ into polycrystalline films has shown to be an effective way to enhance its moisture resistance through a passivation effect. However, the entrance abilities of Cs+ into a MAPbI3 crystal lattice and the influence on photoelectric properties of a single crystal were not clear until now. Therefore, we attempted to grow large MA1- xCs xPbI3 single crystals to introduce Cs+ into the crystal lattice. The existence of Cs+ brought lattice shrinkage and enhanced stability of the MAPbI3 single crystal. A moderate quantity of Cs+ (2%) proved to heighten the photoelectric properties, whereas an excess quantity of Cs+ (5%) brought more shallow defects, which ultimately deteriorated the photoelectric properties.

13.
ACS Appl Mater Interfaces ; 10(32): 27150-27159, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30044082

ABSTRACT

Deep-trap persistent luminescent materials, due to their exceptional ability of energy storage and controllable photon release under external stimulation, have attracted considerable attention in the field of optical information storage. Currently, the lack of suitable materials is still the bottleneck that restrains their practical applications. Herein, we successfully synthesized a series of deep-trap persistent luminescent materials Y3Al5- xGa xO12:Ce3+,V3+ ( x = 0-3) with a garnet structure and developed novel phosphor-in-glass (PiG) films containing these phosphors. The synthesized PiG films exhibited sufficiently deep traps, narrow trap depth distributions, high trap density, high quantum efficiency, and excellent chemical stability, which solved the problem of chemical stability at high temperatures in the reported phosphor-in-silicone films. Moreover, the trap depth in the phosphors and PiG films could be tailored from 1.2 to 1.6 eV, thanks to the bandgap engineering effect, and the emission color was simultaneously changed from green to yellow due to the variation of crystal field strength. Image information was recorded on the PiG films by using a 450 nm blue-light laser in a laser direct writing mode and the recorded information was retrieved under high-temperature thermal stimulation or photostimulation. The Y3Al5- xGa xO12:Ce3+,V3+ PiG films as presented in this work are very promising in the applications of multidimensional and rewritable optical information storage.

14.
ACS Appl Mater Interfaces ; 10(22): 18910-18917, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29770686

ABSTRACT

Luminescent metal-organic frameworks (MOFs) (typically dye-encapsulated MOFs) are considered as one kind of interesting downconversion materials for white-light-emitting diodes (LEDs), but their quantum efficiency (QE) is not sufficient and thus needs to be significantly enhanced for practical applications. In this study, we successfully synthesized a series of Rh@bio-MOF-1 (Rh = rhodamine) with an internal QE as high as ∼79% via a solvothermal reaction followed by cation exchanges. The high efficiency of the Rh@bio-MOF-1 composites was attributable to the high intrinsic luminescent efficiency of the selected Rh dyes, the confinement effect in the bio-MOF-1 host, and the uniform particle morphology. The emission maximum could be continuously tuned from 550 to 610 nm by controlling the species and concentration of encapsulated dye molecules, showing great color tunability of the dye-encapsulated MOFs. The emission lifetime of ∼7 ns was 1 or 2 magnitude orders shorter than that of Ce3+- or Eu2+-doped inorganic phosphors, allowing for visible light communication (VLC). White LEDs, fabricated by using the synthesized Rh@bio-MOF-1 composite and inorganic phosphors of green (Ba,Sr)2SiO4:Eu2+ and red CaAlSiN3:Eu2+, exhibited a high color rendering index of 80-94, a luminous efficacy of 94-156 lm/W, and an excellent stability in color point against drive current. The Rh@bio-MOF-1 composites with tunable colors, short emission lifetime, and high QE are expected to be used for smart white LEDs with multifunctions of both lighting and VLC.

15.
Nanoscale ; 10(20): 9788-9795, 2018 May 24.
Article in English | MEDLINE | ID: mdl-29767202

ABSTRACT

Semiconductor quantum dots (QDs) are promising luminescent materials for use in lighting, display and bio-imaging, and the color tuning is a necessity for such applications. In this work, we report tunable colors and deep-red or near infrared (NIR) emissions in Cu-In-S and Cu-In-S/ZnS QDs by incorporating Sn. These QDs (with a size of 5 nm) with varying Sn concentrations and/or Cu/In ratios were synthesized by a non-injection method, and characterized by a variety of analytical techniques (i.e., XRD, TEM, XPS, absorption, photoluminescence, decay time, etc.). The Cu-Sn-In-S and Cu-Sn-In-S/ZnS QDs with Cu/In = 1/2 show the emission maximum in the ranges of 701-894 nm and 628-785 nm, respectively. The red-shift in emission is ascribed to the decrease of the band gap with the Sn doping. The highest quantum yield of 75% is achieved in Cu-Sn-In-S/ZnS with 0.1 mmol Sn and Cu/In = 1/2. Both the white and NIR LEDs were fabricated by using Cu-Sn-In-S/ZnS QDs and a 365 nm LED chip. The white LED exhibits superhigh color rendering indices of Ra = 97.2 and R9 = 91 and a warm color temperature of 2700 K. And the NIR LED shows an interesting broadband near-infrared emission centered at 741 nm, allowing for applications in optical communication, sensing and medical devices.

16.
ACS Appl Mater Interfaces ; 10(17): 14930-14940, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29637779

ABSTRACT

As a next-generation high-power lighting technology, laser lighting has attracted great attention in high-luminance applications. However, thermally robust and highly efficient color converters suitable for high-quality laser lighting are scarce. Despite its versatility, the phosphor-in-glass (PiG) has been seldom applied in laser lighting because of its low thermal conductivity. In this work, we develop a unique architecture in which a phosphor-in-glass (PiG) film was directly sintered on a high thermally conductive sapphire substrate coated by one-dimensional photonic crystals. The designed color converter with the composite architecture exhibits a high internal quantum efficiency close to that of the original phosphor powders and an excellent packaging efficiency up to 90%. Furthermore, the PiG film can even be survived under the 11.2 W mm-2 blue laser excitation. Combining blue laser diodes with the YAG-PiG-on-sapphire plate, a uniform white light with a high luminance of 845 Mcd m-2(luminous flux: 1839 lm), luminous efficacy of 210 lm W-1, and correlated color temperature of 6504 K was obtained. A high color rendering index of 74 was attained by adding a robust orange or red phosphor layer to the architecture. These outstanding properties meet the standards of vehicle regulations, enabling the PiG films with the composite architecture to be applied in automotive lighting or other high-power and high-luminance laser lighting.

17.
RSC Adv ; 8(61): 35271-35279, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-35547064

ABSTRACT

A series of Ce3+-, Tb3+- and Ce3+/Tb3+-doped La3Si8N11O4 phosphors were synthesized by gas-pressure sintering (GPS). The energy transfer between Ce3+ and Tb3+ occurred in the co-doped samples, leading to a tunable emission color from blue to green under the 360 nm excitation. The energy transfer mechanism was controlled by the dipole-dipole interaction. The Ce3+/Tb3+ co-doped sample had an external quantum efficiency of 46.7%, about 5.6 times higher than the Tb-doped La3Si8N11O4 phosphor (8.3%). The thermal quenching of the Tb3+ emission in La3Si8N11O4:Tb,Ce was greatly reduced from 74 to 30% at 250 °C, owing to the energy transfer from Ce3+ to Tb3+. The blue-green La3Si8N11O4:0.01Ce,0.05Tb phosphor was testified to fabricate a warm white LED that showed a high color rendering index of 90.2 and a correlated color temperature of 3570 K. The results suggested that the co-doped La3Si8N11O4:Ce,Tb phosphor could be a potential blue-green down-conversion luminescent material for use in UV-LED pumped wLEDs.

18.
ACS Appl Mater Interfaces ; 10(2): 1802-1809, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29261282

ABSTRACT

Long-lived luminescent metal-organic frameworks (MOFs) have attracted much attention due to their structural tunability and potential applications in sensing, biological imaging, security systems, and logical gates. Currently, the long-lived luminescence emission of such inorganic-organic hybrids is dominantly confined to short-wavelength regions. The long-wavelength long-lived luminescence emission, however, has been rarely reported for MOFs. In this work, a series of structurally stable long-wavelength long-lived luminescent MOFs have been successfully synthesized by encapsulating different dyes into the green phosphorescent MOFs Cd(m-BDC)(BIM). The multicolor long-wavelength long-lived luminescence emissions (ranging from green to red) in dye-encapsulated MOFs are achieved by the MOF-to-dye phosphorescence energy transfer. Furthermore, the promising optical properties of these novel long-lived luminescent MOFs allow them to be used as ink pads for advanced anticounterfeiting stamps. Therefore, this work not only offers a facile way to develop new types of multicolor long-lived luminescent materials but also provides a reference for the development of advanced long-lived luminescent anticounterfeiting materials.

19.
ACS Appl Mater Interfaces ; 10(1): 845-850, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29256250

ABSTRACT

Hybrid organic-inorganic lead halide perovskites (HOIPs) have received significant attention because of their impressive performances in the fields of solar cells and photoelectric detection. In the past five years, great efforts have been made to improve the crystallinity, reduce grain boundaries, and enhance the stabilities of perovskite films. Compared with films, HOIP single crystals possess fewer grain boundaries and stronger optoelectronic properties and can be applied in optoelectronic devices. As the most popular HOIP member, single crystals of MAPbX3 (X = Br, Cl) are deemed as important candidates for ultraviolet-visible photodetectors, in which the crystal structure anisotropy largely affects the detection performance. In this study, high-quality cubic single crystals of MAPbBr3 and MAPbCl3 were successfully grown from solutions. Taking advantages of their smooth (100) facets, planar metal-semiconductor-metal photodetectors were fabricated using Au interdigitated electrodes. The optoelectronic performances under nonpolarized and linearly polarized lights were explored. The optoelectronic performances were dependent on linearly polarized lights. Interestingly, both responsivity and external quantum efficiency were greatly enhanced under the excitation with linearly polarized lights. Moreover, the polarization-related optical absorptions and the electron densities within the (100) plane could be used to interpret different optoelectronic performances of single crystals of MAPbX3 (X = Br, Cl) under various linearly polarized lights.

20.
ACS Appl Mater Interfaces ; 10(2): 1854-1864, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29277986

ABSTRACT

Deep-trap persistent luminescence materials exhibit unique properties of energy storage and controllable photon release under additional stimulation, allowing for both wavelength and intensity multiplexing to realize high-capacity storage in the next-generation information storage system. However, the lack of suitable persistent luminescence materials with deep traps is the bottleneck of such storage technologies. In this study, we successfully developed a series of novel deep-trap persistent luminescence materials in the Ln2+/Ln3+-doped SrSi2O2N2 system (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) by applying the strategy of trap depth engineering. Interestingly, the trap depth can be tailored by selecting different codopants, and it monotonically increases from 0.90 to 1.18 eV in the order of Er, Ho, and Dy. This is well explained by the energy levels indicated in the host-referred binding energy scheme. The orange-red-emitting SrSi2O2N2:Yb,Dy and green-emitting SrSi2O2N2:Eu,Dy phosphors are demonstrated to be good candidates of information storage materials, which are attributed to their deep traps, narrow thermoluminescence glow bands, high emission efficiency, and excellent chemical stability. This work not only validates the suitability of deep-trap persistent luminescence materials in the information storage applications, but also broadens the avenue to explore such kinds of new materials for applications in anticounterfeiting and advanced displays.

SELECTION OF CITATIONS
SEARCH DETAIL
...