Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 62(7): 2133-2144, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38457067

ABSTRACT

Presently, the combination of graph convolutional networks (GCN) with resting-state functional magnetic resonance imaging (rs-fMRI) data is a promising approach for early diagnosis of autism spectrum disorder (ASD). However, the prevalent approach involves exclusively full-brain functional connectivity data for disease classification using GCN, while overlooking the prior information related to the functional connectivity of brain subnetworks associated with ASD. Therefore, in this study, the multiple functional connectivity-based graph convolutional network (MFC-GCN) framework is proposed, using not only full brain functional connectivity data but also the established functional connectivity data from networks of key brain subnetworks associated with ASD, and the GCN is adopted to acquire complementary feature information for the final classification task. Given the heterogeneity within the Autism Brain Imaging Data Exchange (ABIDE) dataset, a novel External Attention Network Readout (EANReadout) is introduced. This design enables the exploration of potential subject associations, effectively addressing the dataset's heterogeneity. Experiments were conducted on the ABIDE dataset using the proposed framework, involving 714 subjects, and the average accuracy of the framework was 70.31%. The experimental results show that the proposed EANReadout outperforms the best traditional readout layer and improves the average accuracy of the framework by 4.32%.


Subject(s)
Autism Spectrum Disorder , Brain , Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/physiopathology , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/physiopathology , Male , Female , Adolescent , Child , Young Adult , Adult , Brain Mapping/methods , Image Processing, Computer-Assisted/methods
2.
Front Hum Neurosci ; 16: 960784, 2022.
Article in English | MEDLINE | ID: mdl-36034109

ABSTRACT

Background: The neural activity and functional networks of emotion-based cognitive reappraisal have been widely investigated using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). However, single-mode neuroimaging techniques are limited in exploring the regulation process with high temporal and spatial resolution. Objectives: We proposed a source localization method with multimodal integration of EEG and fMRI and tested it in the source-level functional network analysis of emotion cognitive reappraisal. Methods: EEG and fMRI data were simultaneously recorded when 15 subjects were performing the emotional cognitive reappraisal task. Fused priori weighted minimum norm estimation (FWMNE) with sliding windows was proposed to trace the dynamics of EEG source activities, and the phase lag index (PLI) was used to construct the functional brain network associated with the process of downregulating negative affect using the reappraisal strategy. Results: The functional networks were constructed with the measure of PLI, in which the important regions were indicated. In the gamma band source-level network analysis, the cuneus, the lateral orbitofrontal cortex, the superior parietal cortex, the postcentral gyrus, and the pars opercularis were identified as important regions in reappraisal with high betweenness centrality. Conclusion: The proposed multimodal integration method for source localization identified the key cortices involved in emotion regulation, and the network analysis demonstrated the important brain regions involved in the cognitive control of reappraisal. It shows promise in the utility in the clinical setting for affective disorders.

3.
IEEE Trans Med Imaging ; 38(10): 2423-2433, 2019 10.
Article in English | MEDLINE | ID: mdl-30802854

ABSTRACT

The ability to perceive and regulate emotion is a key component of cognition that is often disrupted by disease. Current neuroimaging studies regarding emotion regulation have implicated a number of cortical regions and identified several EEG features of interest, including the late positive potential and frontal asymmetry. Unfortunately, currently applied methods generally lack in the resolution necessary to capture focal cortical activity and explore the causal interactions between brain regions. In this paper, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data were simultaneously recorded from 20 subjects undergoing emotion processing and regulation tasks. Cortical activity with high-spatiotemporal resolution and accuracy was reconstructed using a novel multimodal EEG/fMRI integration method. A detailed causal brain network associated with emotion processing and regulation was then identified, and the network changes that facilitate different emotion conditions were investigated. The cortical activity of the ventrolateral prefrontal (VLPFC) and posterior parietal cortices depicted conditionally-sensitive spike and wave patterns evidenced in inter-regional communication. The VLPFC was found to behave as a main network source, with conditionally-specific interactions supporting emotional shifts. The results provide unique insight into the cortical activity that supports emotional perception and regulation, the origins of known EEG phenomena, and the manner in which brain regions coordinate to affect behavior.


Subject(s)
Brain , Electroencephalography/methods , Emotional Regulation/physiology , Magnetic Resonance Imaging/methods , Algorithms , Brain/diagnostic imaging , Brain/physiology , Brain Mapping , Humans , Image Processing, Computer-Assisted/methods , Signal Processing, Computer-Assisted
4.
Comput Math Methods Med ; 2018: 3018356, 2018.
Article in English | MEDLINE | ID: mdl-30065778

ABSTRACT

BACKGROUND: Neural activity under cognitive reappraisal can be more accurately investigated using simultaneous EEG- (electroencephalography) fMRI (functional magnetic resonance imaging) than using EEG or fMRI only. Complementary spatiotemporal information can be found from simultaneous EEG-fMRI data to study brain function. METHOD: An effective EEG-fMRI fusion framework is proposed in this work. EEG-fMRI data is simultaneously sampled on fifteen visually stimulated healthy adult participants. Net-station toolbox and empirical mode decomposition are employed for EEG denoising. Sparse spectral clustering is used to construct fMRI masks that are used to constrain fMRI activated regions. A kernel-based canonical correlation analysis is utilized to fuse nonlinear EEG-fMRI data. RESULTS: The experimental results show a distinct late positive potential (LPP, latency 200-700ms) from the correlated EEG components that are reconstructed from nonlinear EEG-fMRI data. Peak value of LPP under reappraisal state is smaller than that under negative state, however, larger than that under neutral state. For correlated fMRI components, obvious activation can be observed in cerebral regions, e.g., the amygdala, temporal lobe, cingulate gyrus, hippocampus, and frontal lobe. Meanwhile, in these regions, activated intensity under reappraisal state is obviously smaller than that under negative state and larger than that under neutral state. CONCLUSIONS: The proposed EEG-fMRI fusion approach provides an effective way to study the neural activities of cognitive reappraisal with high spatiotemporal resolution. It is also suitable for other neuroimaging technologies using simultaneous EEG-fMRI data.


Subject(s)
Brain Mapping , Cognition/physiology , Electroencephalography , Adult , Brain , China , Female , Humans , Magnetic Resonance Imaging , Male , Young Adult
5.
Brain Behav ; 7(7): e00728, 2017 07.
Article in English | MEDLINE | ID: mdl-28729935

ABSTRACT

BACKGROUND: Executive function refers to conscious control in psychological process which relates to thinking and action. Emotional decision is a part of hot executive function and contains emotion and logic elements. As a kind of important social adaptation ability, more and more attention has been paid in recent years. OBJECTIVE: Gambling task can be well performed in the study of emotional decision. As fMRI researches focused on gambling task show not completely consistent brain activation regions, this study adopted EEG-fMRI fusion technology to reveal brain neural activity related with feedback stimuli. METHODS: In this study, an EEG-informed fMRI analysis was applied to process simultaneous EEG-fMRI data. First, relative power-spectrum analysis and K-means clustering method were performed separately to extract EEG-fMRI features. Then, Generalized linear models were structured using fMRI data and using different EEG features as regressors. RESULTS: The results showed that in the win versus loss stimuli, the activated regions almost covered the caudate, the ventral striatum (VS), the orbital frontal cortex (OFC), and the cingulate. Wide activation areas associated with reward and punishment were revealed by the EEG-fMRI integration analysis than the conventional fMRI results, such as the posterior cingulate and the OFC. The VS and the medial prefrontal cortex (mPFC) were found when EEG power features were performed as regressors of GLM compared with results entering the amplitudes of feedback-related negativity (FRN) as regressors. Furthermore, the brain region activation intensity was the strongest when theta-band power was used as a regressor compared with the other two fusion results. CONCLUSIONS: The EEG-based fMRI analysis can more accurately depict the whole-brain activation map and analyze emotional decision problems.


Subject(s)
Brain/physiology , Decision Making/physiology , Electroencephalography , Emotions/physiology , Executive Function/physiology , Magnetic Resonance Imaging/methods , Adult , Brain/diagnostic imaging , Brain Mapping/methods , Evoked Potentials/physiology , Female , Humans , Male , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Reward , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...