Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202405228, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744669

ABSTRACT

Nacre is a classic model, providing an inspiration for fabricating high-performance bulk nanocomposites with the two-dimensional platelets. However, the "brick" of nacre, aragonite platelet, is an ideal building block for making high-performance bulk nanocomposites. Herein, we demonstrated a strong and tough conductive nacre through reassembling aragonite platelets with bridged by MXene nanosheets and hydrogen bonding, not only providing high mechanical properties but also excellent electrical conductivity. The flexural strength and fracture toughness of the obtained conductive nacre reach ~ 282 MPa and ~ 6.3 MPa m1/2, which is 1.6 and 1.6 times higher than that of natural nacre, respectively. These properties are attributed to densification and high orientation degree of the conductive nacre, which is effectively induced by the combined interactions of hydrogen bonding and MXene nanosheets bridging. The crack propagations in conductive nacre are effectively inhibited through crack deflection with hydrogen bonding, and MXene nanosheets bridging between aragonite platelets. In addition, our conductive nacre also provides a self-monitoring function for structural damage and offers exceptional electromagnetic interference shielding performance. Our strategy of reassembling the aragonite platelets exfoliated from waste nacre into high-performance artificial nacre, provides an avenue for fabricating high-performance bulk nanocomposites through the sustainable reutilization of shell resources.

2.
Sci Bull (Beijing) ; 69(7): 913-921, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38320895

ABSTRACT

Nacre has inspired research to fabricate tough bulk composites for practical applications using inorganic nanomaterials as building blocks. However, with the considerable pressure to reduce global carbon emissions, preparing nacre-inspired composites remains a significant challenge using more economical and environmentally friendly building blocks. Here we demonstrate tough and conductive nacre by assembling aragonite platelets exfoliated from natural nacre, with liquid metal and sodium alginate used as the "mortar". The formation of GaOC coordination bonding between the gallium ions and sodium alginate molecules reduces the voids and improves compactness. The resultant conductive nacre exhibits much higher mechanical properties than natural nacre. It also shows excellent impact resistance attributed to the synergistic strengthening and toughening fracture mechanisms induced by liquid metal and sodium alginate. Furthermore, our conductive nacre exhibits exceptional self-monitoring sensitivity for maintaining structural integrity. The proposed strategy provides a novel avenue for turning natural nacre into a valuable green composite.

3.
Adv Mater ; 35(51): e2305807, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37658581

ABSTRACT

High-performance MXene fibers are always of significant interest for flexible textile-based devices. However, achieving high mechanical property and electrical conductivity remains challenging due to the uncontrolled loose microstructures of MXene (Ti3 C2 Tx and Ti3 CNTx ) nanosheets. Herein, high-performance MXene fibers directly obtained through fluidics-assisted thermal drawing are demonstrated. Tablet interlocks are formed at the interface layer between the outer cyclic olefin copolymer and inner MXene nanosheets due to the thermal drawing induced stresses, resulting in thousands of meters long macroscopic compact MXene fibers with ultra-high tensile strength, toughness, and outstanding electrical conductivity. Further, large-scale woven textiles constructed by these fibers offer exceptional electromagnetic interference shielding performance with excellent durability and stability. Such an effective and sustainable approach can be applied to produce functional fibers for applications in both daily life and aerospace.

4.
ACS Appl Mater Interfaces ; 14(36): 41045-41052, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36047718

ABSTRACT

Multifunctional batteries have attracted increasing attention, offering additional functionalities beyond the conventional batteries. Herein, we report a fiber-shaped Zn ion battery that not only acts as a high-performance power supply but also provides a sensing function to monitor human motions. Titanium fiber coated with α-MnO2 nanoflowers is exploited as the cathode for the fiber-shaped Zn ion battery, taking full advantage of such unique three-dimensional nanoflower structures of α-MnO2 with a large electrochemically active surface area and fast electrochemical reaction kinetics. Thus, the obtained fiber-shaped Zn ion battery shows a high capacity of 280 mAh g-1 at 0.1 A g-1, resulting in a notable energy density of 396 Wh kg-1, good stability (capacity retention of 80.6% after 300 cycles), and high flexibility. As a demonstration, an electronic watch and five LEDs are successfully driven by two fiber-shaped Zn ion batteries. Furthermore, the fiber-shaped Zn ion battery is integrated with a strain sensor based on a carbon nanotube/polydimethylsiloxane film, offering good sensitivity to monitor motions of different body parts, such as the wrist, finger, elbow, and knee. This work provides insights into multifunctional battery applications for next-generation wearable electronics.

5.
Nat Commun ; 13(1): 4564, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35931719

ABSTRACT

Recent advances in MXene (Ti3C2Tx) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential of MXene fibers, reaching a balance between electrical conductivity and mechanical property is still the fundamental challenge, mainly due to the difficulties to further compact the loose MXene nanosheets. In this work, we demonstrate a continuous and controllable route to fabricate ultra-compact MXene fibers with an in-situ generated protective layer via the synergy of interfacial interactions and thermal drawing-induced stresses. The resulting ultra-compact MXene fibers with high orientation and low porosity exhibit not only excellent tensile strength and ultra-high toughness, but also high electrical conductivity. Then, we construct meter-scale MXene textiles using these ultra-compact fibers to achieve high-performance electromagnetic interference shielding and personal thermal management, accompanied by the high mechanical durability and stability even after multiple washing cycles. The demonstrated generic strategy can be applied to a broad range of nanostructured materials to construct functional fibers for large-scale applications in both space and daily lives.

6.
Angew Chem Int Ed Engl ; 60(34): 18397-18410, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-33755316

ABSTRACT

Graphene materials have been widely applied in various fields because of their remarkable mechanical and electrical properties. However, two obstacles arise during the assembly of graphene platelets into macroscale graphene materials and composites that impair the performance of the resultant graphene materials: 1) the voids between the graphene platelets, and 2) the wrinkling of the graphene platelets. In the past decade, several strategies have been developed to eliminate these obstacles. These strategies result in strong macroscale graphene materials, such as graphene fibers with tensile strengths of over 3.4 GPa and sheets with tensile strengths of over 1.5 GPa, which have many practical applications. This Minireview summarizes the effective strategies for assembling graphene materials and compares their advantages and drawbacks. The preparation processes as well as the resulting fundamental mechanical properties and wide spectrum of electrical and magnetic properties are also discussed. Finally, our outlook for the future of this field is presented.

7.
Nat Commun ; 11(1): 2077, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32350273

ABSTRACT

Flexible reduced graphene oxide (rGO) sheets are being considered for applications in portable electrical devices and flexible energy storage systems. However, the poor mechanical properties and electrical conductivities of rGO sheets are limiting factors for the development of such devices. Here we use MXene (M) nanosheets to functionalize graphene oxide platelets through Ti-O-C covalent bonding to obtain MrGO sheets. A MrGO sheet was crosslinked by a conjugated molecule (1-aminopyrene-disuccinimidyl suberate, AD). The incorporation of MXene nanosheets and AD molecules reduces the voids within the graphene sheet and improves the alignment of graphene platelets, resulting in much higher compactness and high toughness. In situ Raman spectroscopy and molecular dynamics simulations reveal the synergistic interfacial interaction mechanisms of Ti-O-C covalent bonding, sliding of MXene nanosheets, and π-π bridging. Furthermore, a supercapacitor based on our super-tough MXene-functionalized graphene sheets provides a combination of energy and power densities that are high for flexible supercapacitors.

8.
Proc Natl Acad Sci U S A ; 117(16): 8727-8735, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32253302

ABSTRACT

Graphene-based films with high toughness have many promising applications, especially for flexible energy storage and portable electrical devices. Achieving such high-toughness films, however, remains a challenge. The conventional mechanisms for improving toughness are crack arrest or plastic deformation. Herein we demonstrate black phosphorus (BP) functionalized graphene films with record toughness by combining crack arrest and plastic deformation. The formation of covalent bonding P-O-C between BP and graphene oxide (GO) nanosheets not only reduces the voids of GO film but also improves the alignment degree of GO nanosheets, resulting in high compactness of the GO film. After further chemical reduction and π-π stacking interactions by conjugated molecules, the alignment degree of rGO nanosheets was further improved, and the voids in lamellar graphene film were also further reduced. Then, the compactness of the resultant graphene films and the alignment degree of reduced graphene oxide nanosheets are further improved. The toughness of the graphene film reaches as high as ∼51.8 MJ m-3, the highest recorded to date. In situ Raman spectra and molecular dynamics simulations reveal that the record toughness is due to synergistic interactions of lubrication of BP nanosheets, P-O-C covalent bonding, and π-π stacking interactions in the resultant graphene films. Our tough black phosphorus functionalized graphene films with high tensile strength and excellent conductivity also exhibit high ambient stability and electromagnetic shielding performance. Furthermore, a supercapacitor based on the tough films demonstrated high performance and remarkable flexibility.

9.
ACS Appl Mater Interfaces ; 9(7): 6030-6043, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28121121

ABSTRACT

Halloysite@polyaniline (HA@PANI) hybrid nanotubes are synthesized by the in situ chemical polymerization of aniline on halloysite clay nanotubes. By facilely tuning the dopant acid, pH, and apparent weight proportion for aniline (ANI) and halloysite (HA) nanotubes in the synthesis process, PANI with tuned oxidation state, doping extent, and content are in situ growing on halloysite nanotubes. The reaction system's acidity is tuned by dopant acid, such as HCl, H2SO4, HNO3, and H3PO4. The adsorption result shows the fabricated HA@PANI hybrid nanotubes can effectively adsorb Cr(VI) oxyanion and the adsorption ability changes according to the dopant acid, pH, and apparent weight proportion for ANI and HA in the synthesis process. Among them, the HA@PANI fabricated with HCl as dopant acid tuning the pH at 0.5 and 204% apparent weight proportion for ANI and HA (HP/0.5/204%-HCl) shows the highest adsorption capacity. The adsorption capacity is in accordance well with the doping extent of PANI in HA@PANI. Furthermore, when HP/0.5/204%-HCl is redoped with HNO3, H2SO4, and H3PO4, the adsorption capacity declines, implying the dopant acid in the process of redoping exhibits a marked effect on Cr(VI) oxyanion adsorption for the HA@PANI hybrid nanotubes. HP/0.5/204%-HCl and HP/0.5/204%-H3PO4 have demonstrated good regenerability with an above 80% removal ratio after four cycles. Moreover, the HA@PANI adsorbent has better sedimentation ability than that of pure PANI. The adsorption behavior is in good agreement with Langmuir and pseudo second-order equations, indicating the adsorption of HA@PANI for Cr(VI) oxyanion is chemical adsorption. FT-IR and XPS of HA@PANI after Cr(VI) oxyanion adsorption indicate that the doped amine/imine groups (-NH+/═N+- groups) are the main adsorption sites for the removal of Cr(VI) oxyanion by electrostatic adsorption and reduction of the adsorbed Cr (VI) oxyanion to Cr(III) simultaneously.

SELECTION OF CITATIONS
SEARCH DETAIL
...