Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 497: 14-22, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28260671

ABSTRACT

Tuning the magnetic anisotropy of nanoparticle assemblies is critical for their applications such as on-chip magnetic electronic components and electromagnetic wave absorption. In this work, we developed a facile hierarchical self-assembly method to separately control the magnetic shape and magnetocrystalline anistropy of individual nanoparticle assemblies in arrays. Since magnetic nanoparticle assemblies in the array have the same size, shape and alignment, we are able to study the magnetic properties of individual nanoparticle assembly by measuring the whole arrays. The interplay between the two magnetic anisotropies was systematically studied for disk- and bar-shaped nanoparticle assemblies. Maximum magnetic anisotropy was obtained when the easy axis of magnetic nanoparticles was aligned along the long axes of the bar-shaped nanoparticles assemblies.

2.
Inorg Chem ; 56(8): 4513-4521, 2017 Apr 17.
Article in English | MEDLINE | ID: mdl-28345885

ABSTRACT

LiZn ferrite ceramics with high saturation magnetization (4πMs) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 µm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 µm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li0.415Zn0.27Mn0.06Ti0.1Fe2.155O4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πMs and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.

3.
Sci Rep ; 6: 34030, 2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27667259

ABSTRACT

Germanium Tin (GeSn) films have drawn great interest for their visible and near-infrared optoelectronics properties. Here, we demonstrate large area Germanium Tin nanometer thin films grown on highly flexible aluminum foil substrates using low-temperature molecular beam epitaxy (MBE). Ultra-thin (10-180 nm) GeSn film-coated aluminum foils display a wide color spectra with an absorption wavelength ranging from 400-1800 nm due to its strong optical interference effect. The light absorption ratio for nanometer GeSn/Al foil heterostructures can be enhanced up to 85%. Moreover, the structure exhibits excellent mechanical flexibility and can be cut or bent into many shapes, which facilitates a wide range of flexible photonics. Micro-Raman studies reveal a large tensile strain change with GeSn thickness, which arises from lattice deformations. In particular, nano-sized Sn-enriched GeSn dots appeared in the GeSn coatings that had a thickness greater than 50 nm, which induced an additional light absorption depression around 13.89 µm wavelength. These findings are promising for practical flexible photovoltaic and photodetector applications ranging from the visible to near-infrared wavelengths.

SELECTION OF CITATIONS
SEARCH DETAIL
...