Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(6): 5253-5261, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38263913

ABSTRACT

Inorganic double perovskites have garnered significant attention due to their desirable characteristics, such as low-toxicity, stability and long charge-carrier lifetimes. However, most double perovskites, especially Cs2AgBiBr6, have wide bandgaps, which limits power conversion efficiencies. In this work, through the first principles method corrected by self-energy, we investigate the mechanical, electric and optical properties of Cs2B'B''Br6 (B' = Ag, Au, Cu; B'' = Bi, Al, Sb, In). Based on performance screening, three kinds of materials with good toughness, high carrier mobility and wide visible-light absorption (around 105 cm-1) are obtained, which are compared with Cs2AgBiBr6. Meanwhile, we use a SACPS-1D simulation to design lead-free double perovskites with excellent properties suitable for photovoltaic solar cell devices, which are made into a planar perovskite heterojunction. Ultimately, the optimal structure is determined to be FTO/WS2/Cs2CuBiBr6/spiro-OMeTAD/Ag, which achieves a power conversion efficiency of 14.08%, surpassing the conventional structure efficiency of 6.1%. It provides valuable guidance for the structure design of a lead-free double perovskite device and offers new insights into the development of optoelectronic devices for solar energy utilization.

2.
Molecules ; 28(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37764376

ABSTRACT

Hybrid perovskite materials with high light absorption coefficients, long diffusion lengths, and high mobility have attracted much attention, but their commercial development has been seriously hindered by two major problems: instability and lead toxicity. This has led to lead-free halide double perovskite becoming a prominent competitor in the photovoltaic field. For lead-free double perovskites, Pb2+ can be heterovalent, substituted by non-toxic metal cations as a double perovskite structure, which promotes the flexibility of the composition. However, the four component elements and low solubility in the solvent result in synthesis difficulties and phase impurity problems. And material phase purity and film quality are closely related to the number of defects, which can limit the photoelectric performance of solar cells. Therefore, based on this point, we summarize the synthesis methods of Cs2B'B″X6 double perovskite crystals and thin films. Moreover, in the application of solar cells, the existing research mainly focuses on the formation process of thin films, band gap adjustment, and surface engineering to improve the quality of films and optimize the performance of devices. Finally, we propose that Cs2B'B″X6 lead-free perovskites offer a promising pathway toward developing highly efficient and stable perovskite solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...