Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 796: 148941, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34328876

ABSTRACT

Most of the reduction processes for Cr (VI) removal tend to be available only at the acidic condition and the capable extent of pH is limited. Here, we developed a facile strategy for constructing CuS/TiO2 architectures via a facile precipitation process. The as-prepared urchin-like CuS microspheres possessed hierarchical/large porous structure and unique electrical structure, which provided a strong ability to capture the Cr(VI) ions in water. Once CuS microspheres were combined with TiO2 crystals (P25), a surprised high removal efficiency for Cr(VI) was obtained. With optimal molar ratio of CuS:TiO2 (0.72:1), 4.4 and 1.3 times in Cr(VI) removal rate were obtained with respect to pure TiO2 and CuS. The high removal efficiency was induced by the distinct synergistic role of strong adsorption and photocatalytic reduction originated from unique electrical structure in CuS/TiO2 hetero-structure. Moreover, these novel CuS/TiO2 architectures possess promising application for Cr6+ effluents remediation in a wide range of pH and with co-existing anions and cations.


Subject(s)
Wastewater , Adsorption , Catalysis , Chromium , Copper , Oxidation-Reduction , Titanium
2.
Nanoscale ; 11(16): 7720-7733, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30946417

ABSTRACT

With increasing pollution of water resources and demand for hydrogen energy, photocatalysis, as a "green chemistry" technology, has attracted great attention. To meet the practical application requirements, photocatalysts should possess enhanced efficiency and be of low cost. Here, a novel Z-scheme ternary ZnTiO3/Zn2Ti3O8/ZnO heterojunction has been prepared by a solvothermal-calcination process. The phase transformation process of the sample can be defined as two processes, dehydration and thermal decomposition (ZnTiO3 → Zn2Ti3O8 + ZnO). The ZnTiO3/Zn2Ti3O8/ZnO heterojunction produced in this facile phase transformation strategy displayed highly efficient photocatalytic performance in water splitting for hydrogen production and pollutant removal, e.g. phenol, dye, and heavy metal Cr(vi). On the basis of the PL spectra, photocurrent response, radical trapping experiments and ESR tests, we found that a nontraditional transport of photoinduced carriers created by a single Z-scheme mechanism played a significant role in the efficient removing of target pollutants and hydrogen generation. This work provides a facile phase transformation approach to construct a Z-scheme semiconductor heterostructure system with high efficiency for hydrogen production and water pollution treatment.

3.
Chemosphere ; 157: 250-61, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27236845

ABSTRACT

A series of Ag2S-Ag2CO3 (4%, 8%, 16%, 32% and 40% Ag2S), Ag2CO3@Ag2S (32%Ag2S) and Ag2S@Ag2CO3 (32%Ag2S) composite photocatalysts were fabricated by coprecipitation or successive precipitation reaction. The obtained catalysts were analyzed by N2 physical adsorption, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and photocurrent test. Under visible light irradiation, the influences of Ag2S content and core-shell property on photocatalytic activity and stability were evaluated in studies focused on the degradation of methyl orange (MO) dye, phenol, and bisphenol A. Results showed that excellent photocatalytic performance was obtained over Ag2S/Ag2CO3 composite photocatalysts with respect to Ag2S and Ag2CO3. With optimal content of Ag2S (32 wt%), the Ag2S-Ag2CO3 showed the highest photocatalytic degradation efficiency. Moreover, the structured property of Ag2S/Ag2CO3 greatly influenced the activity. Compared with Ag2S-Ag2CO3 and Ag2CO3@Ag2S, core-shell like Ag2S@Ag2CO3 demonstrated the highest activity and stability. The main reason for the boosting of photocatalytic performance was due to the formation of Ag2S/Ag2CO3 well contacted interface and unique electron structures. Ag2S/Ag2CO3 interface could significantly increase the separation efficiency of the photo-generated electrons (e(-)) and holes (h(+)), and production of OH radicals. More importantly, the low solubility of Ag2S shell could effectively protect the core of Ag2CO3, which further guarantees the stability of Ag2CO3.


Subject(s)
Carbonates/chemistry , Photolysis , Silver Compounds/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Azo Compounds/chemistry , Benzhydryl Compounds/chemistry , Coloring Agents/chemistry , Light , Phenol/chemistry , Phenols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...