Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
NPJ Sci Food ; 8(1): 25, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702314

ABSTRACT

Cultivated meat (CM) offers a sustainable and ethical alternative to conventional animal agriculture, involving cell maturation in a controlled environment. To emulate the structural complexity of traditional meat, the development of animal-free and edible scaffolds is crucial, providing vital physical and biological support during tissue development. The aligned vascular bundles of the decellularised asparagus scaffold were selected to facilitate the attachment and alignment of murine myoblasts (C2C12) and porcine adipose-derived mesenchymal stem cells (pADMSCs). Muscle differentiation was assessed through immunofluorescence staining with muscle markers, including Myosin heavy chain (MHC), Myogenin (MYOG), and Desmin. The metabolic activity of Creatine Kinase in C2C12 differentiated cells significantly increased compared to proliferated cells. Quantitative PCR analysis revealed a significant increase in Myosin Heavy Polypeptide 1 (MYH1) and MYOG expression compared to Day 0. These results highlight the application of decellularised plant scaffold (DPS) as a promising, edible material conducive to cell attachment, proliferation, and differentiation into muscle tissue. To create a CM prototype with biological mimicry, pADMSC-derived muscle and fat cells were also co-cultured on the same scaffold. The co-culture was confirmed through immunofluorescence staining of muscle markers and LipidTOX staining, revealing distinct muscle fibres and adipocytes containing lipid droplets respectively. Texture profile analysis conducted on uncooked CM prototypes and pork loin showed no significant differences in textural values. However, the pan-fried CM prototype differed significantly in hardness and chewiness compared to pork loin. Understanding the scaffolds' textural profile enhances our insight into the potential sensory attributes of CM products. DPS shows potential for advancing CM biomanufacturing.

2.
Food Chem ; 452: 139594, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38749142

ABSTRACT

Protein glycation closely intertwines with the pathogenesis of various diseases, sparking a growing interest in exploring natural antiglycation agents. Herein, high-purity betacyanins (betanin and phyllocactin) derived from Hylocereus polyrhizus peel were studied for their antiglycation potential using an in vitro bovine serum albumin (BSA)-glucose model. Notably, betacyanins outperformed aminoguanidine, a recognized antiglycation agent, in inhibiting glycation product formation across different stages, especially advanced glycation end-products (AGEs). Interestingly, phyllocactin displayed stronger antiglycation activity than betanin. Subsequent mechanistic studies employing molecular docking analysis and fluorescence quenching assay unveiled that betacyanins interact with BSA endothermically and spontaneously, with hydrophobic forces playing a dominant role. Remarkably, phyllocactin demonstrated higher binding affinity and stability to BSA than betanin. Furthermore, the incorporation of betacyanins into bread dose-dependently suppressed AGEs formation during baking and shows promise for inhibiting in vivo glycation process post-consumption. Overall, this study highlights the substantial potential of betacyanins as natural antiglycation agents.


Subject(s)
Betacyanins , Bread , Glycation End Products, Advanced , Molecular Docking Simulation , Plant Extracts , Serum Albumin, Bovine , Glycosylation , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/chemistry , Betacyanins/chemistry , Betacyanins/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Bread/analysis , Cactaceae/chemistry , Cactaceae/metabolism , Animals , Cattle
3.
Food Chem X ; 22: 101442, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38746782

ABSTRACT

This study investigated the impact of different temperatures and durations on the structural and emulsifying properties of copra meal protein. Additionally, the stability of copra meal protein Pickering emulsions was assessed through rheological and interfacial characteristics. Findings revealed a positive correlation between emulsification properties and heating temperature and duration. Thermal aggregates, facilitated by hydrogen bonds, hydrophobic interactions, and disulfide bonds, significantly enhanced surface hydrophobicity. Heat-treated copra meal protein-based Pickering emulsions demonstrate enhanced adsorption at the oil-water interface and resistance to diffusion. The three-phase contact angle increases from 57.7° to 79.8° following heating at 95 °C for 30 min. The addition of NaCl and heating treatment did not affect emulsion particle size or interface adsorption ability. But it improved the rheological properties to varying degrees. These results offer valuable insights for optimizing the physicochemical and functional attributes of copra meal protein in the food industry.

4.
Food Chem ; 451: 139467, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38678661

ABSTRACT

Betacyanins have garnered escalating research interest for their promising bioactivities. However, substantial challenges in purification and separation have impeded a holistic comprehension of the distinct bioactivities of individual betacyanins and their underlying mechanisms. Herein, betanin and phyllocactin monomers with purity exceeding 95% were successfully obtained from Hylocereus polyrhizus peel using a feasible protocol. These monomers were subsequently employed for comparative bioactivity assessments to uncover underlying mechanisms and illuminate structure-activity relationships. Interestingly, phyllocactin exhibited superior antioxidant activities and 36.1% stronger inhibitory activity on α-glucosidase compared to betanin. Mechanistic studies have revealed that they function as mixed-type inhibitors of α-amylase and competitive inhibitors of α-glucosidase, with interactions predominantly driven by hydrogen bonding. Notably, phyllocactin demonstrated a greater binding affinity with enzymes than betanin, thereby substantiating its heightened inhibitory activity. Overall, our results highlight novel bioactivities of betacyanin monomers and provide profound insights into the intricate interplay between structures and properties.


Subject(s)
Antioxidants , Betacyanins , Cactaceae , Hypoglycemic Agents , Plant Extracts , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Betacyanins/chemistry , Betacyanins/pharmacology , Betacyanins/isolation & purification , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Cactaceae/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/chemistry , Structure-Activity Relationship
5.
Appl Environ Microbiol ; 89(11): e0060223, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37874288

ABSTRACT

IMPORTANCE: Based on the U.S. Food and Drug Administration regulations, E. coli O157:H7 is a pertinent pathogen in high acid juices that needs to be inactivated during the pasteurization process. The results of this study suggest that the effect of acid adaptation should be considered in the selection of HPP parameters for E. coli O157:H7 inactivation to ensure that pasteurization objectives are achieved.


Subject(s)
Brassica rapa , Escherichia coli O157 , Escherichia coli O157/physiology , Food Microbiology , Food Contamination/analysis , Acids/pharmacology , Meat , Colony Count, Microbial
6.
Biomaterials ; 301: 122216, 2023 10.
Article in English | MEDLINE | ID: mdl-37413843

ABSTRACT

The hierarchically porous property of CaCO3 has attracted considerable attention in the field of active delivery ingredients due to its high adsorption capacity. Here, a facile and high-efficient approach to control the calcification processes of CaCO3 ending with calcite microparticles with superior porosity and stability is reported and evaluated. In this work, a series of quercetin promoted CaCO3 microparticles, using soy protein isolate (SPI) as entrapment agent, was synthesized, characterized, and their digestive behavior and antibacterial activity were evaluated. Results obtained indicated that quercetin showed good ability to direct the calcification pathway of amorphous calcium carbonate (ACC) with the formation of flower- and petal-like structures. The quercetin-loaded CaCO3 microparticles (QCM) had a macro-meso-micropore structure, which was identified to be the calcite form. The macro-meso-micropore structure provided QCM with the largest surface area of 78.984 m2g-1. The loading ratio of SPI to QCM was up to 200.94 µg per mg of QCM. The protein and quercetin composite microparticles (PQM) were produced by simply dissolving the CaCO3 core, and the obtained PQM was used for the delivery of quercetin and protein. Thermogravimetric analysis showed PQM presented with good thermal stability without the CaCO3 core. Furthermore, minor discrepancy was noted in protein conformational structures after removing the CaCO3 core. In vitro digestion revealed that approximately 80% of the loaded quercetin was released from PQM during intestinal digestion, and the released quercetin exhibited efficient transportation across the Caco-2 cell monolayer. More importantly, the PQM digesta retained enhanced antibacterial activities to inhibit growth of Escherichia coli and Staphylococcus aureus. Porous calcites show a high potential as a delivery system for food applications.


Subject(s)
Calcium Carbonate , Quercetin , Humans , Porosity , Quercetin/pharmacology , Calcium Carbonate/chemistry , Caco-2 Cells , Anti-Bacterial Agents/pharmacology , Proteins , Escherichia coli
7.
Ultrason Sonochem ; 97: 106466, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37290152

ABSTRACT

The influence of ultrasonic processing parameters including reaction temperature (60, 70 and 80 °C), time (0, 15, 30, 45 and 60 min) and amplitude (70, 85 and 100%) on the formation and antioxidant activity of Maillard reaction products (MRPs) in a solution of chitosan and glucose (1.5 wt% at mass ratio of 1:1) was investigated. Selected chitosan-glucose MRPs were further studied to determine the effects of solution pH on the fabrication of antioxidative nanoparticles by ionic crosslinking with sodium tripolyphosphate. Results from FT-IR analysis, zeta-potential determination and color measurement indicated that chitosan-glucose MRPs with improved antioxidant activity were successfully produced using an ultrasound-assisted process. The highest antioxidant activity of MRPs was observed at the reaction temperature, time and amplitude of 80 °C, 60 min and 70%, respectively, with âˆ¼ 34.5 and ∼20.2 µg Trolox mL-1 for DPPH scavenging activity and reducing power, respectively. The pH of both MRPs and tripolyphosphate solutions significantly influenced the fabrication and characteristics of the nanoparticles. Using chitosan-glucose MRPs and tripolyphosphate solution at pH 4.0 generated nanoparticles with enhanced antioxidant activity (∼1.6 and âˆ¼ 1.2 µg Trolox mg-1 for reducing power and DPPH scavenging activity, respectively) with the highest percentage yield (∼59%), intermediate particle size (∼447 nm) and zeta-potential âˆ¼ 19.6 mV. These results present innovative findings for the fabrication of chitosan-based nanoparticles with enhanced antioxidant activity by pre-conjugation with glucose via the Maillard reaction aided by ultrasonic processing.


Subject(s)
Chitosan , Nanoparticles , Antioxidants/pharmacology , Glucose , Spectroscopy, Fourier Transform Infrared , Maillard Reaction , Glycation End Products, Advanced
8.
J Sci Food Agric ; 103(9): 4293-4302, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36750373

ABSTRACT

BACKGROUND: Jiuyao is a critical fermenting agent in traditional huangjiu brewing and it affects the quality of huangjiu. To assess and monitor the quality of jiuyao effectively we determined the differences between two common types of substandard jiuyao and normal jiuyao, with emphasis on the comparison of the main components, enzymatic activity, volatile substances, and microbial community structure. RESULTS: The water and starch content, acid protease activity, and esterification capability of type I substandard jiuyao were significantly lower than those of the normal jiuyao, and the protein contents, liquefaction capability, glycation capability, and neutral protease activity were substantially higher than those of the normal jiuyao. Type II substandard jiuyao had significantly lower indices than the normal group except for the starch and free amino acid content, which were significantly higher than those of the normal jiuyao. Significant differences were observed between substandard and normal jiuyao in the content of 21 volatile compounds. 2-Pentylfuran could be used as a marker of substandard jiuyao. Type I substandard jiuyao contained a higher abundance of aerobic Pediococcus and Marivita in comparison with the normal jiuyao. Type II substandard jiuyao consisted of a greater abundance of anaerobic Mucor and Staphylococcus. CONCLUSION: The quality of jiuyao was significantly affected by the water content. Due to the different abundances of aerobic and anaerobic bacteria in jiuyao, oxygen may also be an important parameter affecting the quality of jiuyao. We believe that the present study offers a theoretical basis for the evaluation and control of the quality of jiuyao. © 2023 Society of Chemical Industry.


Subject(s)
Bioreactors , Microbiota , Bioreactors/microbiology , Amino Acids , Starch , Peptide Hydrolases
9.
Food Chem ; 408: 135135, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36527922

ABSTRACT

Atmospheric solids analysis probe-mass spectrometry (ASAP-MS), an ambient mass spectrometry technique, was used to differentiate spring and autumn Tieguanyin teas. Two configurations were used to obtain their chemical fingerprints - ASAP attached to a high-resolution quadrupole time-of-flight mass spectrometer (i.e., ASAP-QTOF) and to a single-quadrupole mass spectrometer (i.e., Radian™ ASAP™ mass spectrometer). Then, orthogonal projections to latent structures-discriminant analysis was conducted to identify features that held promise in differentiating harvest seasons. Four machine learning models - decision tree, linear discriminant analysis, support vector machine, and k-nearest neighbour - were built using these features, and high classification accuracy of up to 100% was achieved. The markers were putatively identified using their accurate masses and MS/MS fragmentation patterns from ASAP-QTOF. This approach was successfully transferred to the Radian ASAP MS, which is more deployable in the field. Overall, this study demonstrated the potential of ASAP-MS as a rapid fingerprinting tool for differentiating spring and autumn Tieguanyin.


Subject(s)
Tandem Mass Spectrometry , Seasons , Discriminant Analysis , Cluster Analysis
10.
Food Chem ; 406: 135004, 2023 Apr 16.
Article in English | MEDLINE | ID: mdl-36481514

ABSTRACT

The health benefits of quercetin are limited by its low bioaccessibility. This could be improved by developing plant-based protein delivery systems. Encapsulating quercetin using untreated and high-intensity ultrasound treated (20 kHz at 139 W for 10, 15 and 20 min) soy protein isolate (SPI) produced composite nanoparticles at around 127-136 nm. Ultrasound treatments on SPI caused structural changes of proteins (e.g. around 6-fold increase of surface hydrophobicity and protein solubility) favorable to encapsulation. The encapsulation efficiency for quercetin complexed with 15 min ultrasound treated SPI (76.5 %) was around 10-fold of that with the native SPI (7.2 %). Quercetin was significantly more in vitro bioaccessible when complexed with the treated SPI (61.1 %-64.5 %), as compared to the free quercetin (10.5 %-13.0 %). Ultrasound treated SPI seems to be a promising nanocarrier to encapsulate hydrophobic bioactive ingredients with higher solubility, stability, and bioaccessibility.


Subject(s)
Nanoparticles , Quercetin , Quercetin/chemistry , Soybean Proteins/chemistry , Nanoparticles/chemistry , Solubility , Hydrophobic and Hydrophilic Interactions
11.
J Sci Food Agric ; 103(2): 692-704, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36121332

ABSTRACT

BACKGROUND: Huangjiu is an important component of traditional fermented food. It is produced by cereal fermentation. Sticky rice fermented huangjiu is an abundant source of polysaccharides, oligosaccharides, proteins, amino acids, and flavor compounds (POPAF), and it has been used as a dietary supplement and pharmaceutical ingredient. The purpose of this study is to explore the alleviation of constipation using sticky rice fermented huangjiu, with the aim of providing a basis for the nutritional treatment of constipation. RESULTS: Sticky rice fermented huangjiu was more effective in the alleviation of constipation than same concentration of ethanol treatment on serum neurotransmitters, gut microbiota, and intestinal metabolites in this 17 days constipation mouse model. Compared with ethanol treatment, the administration of sticky rice fermented huangjiu to constipated mice increased gastrointestinal motility. It alleviated the decrease in motilin (27.94%), substance P (13.85%), gastrin (63.46%), 5-hydroxytryptamine (4.55%), and short-chain fatty acid (19.80%) levels, and alleviated the increase in somatostatin levels (9.54%). Furthermore, the administration of sticky rice fermented huangjiu regulated the microbiota-mediated gut ecology through alterations in the characteristic taxa. CONCLUSION: The results reveal that sticky rice fermented huangjiu may alleviate loperamide-induced constipation by the regulation of serum neurotransmitters and gut microbiota. These findings reveal that huangjiu is endowed with many functional components by cereal fermentation, and the bioactive substances in huangjiu can be separated and applied for medical treatment or diet therapy in the future. © 2022 Society of Chemical Industry.


Subject(s)
Gastrointestinal Microbiome , Oryza , Mice , Animals , Loperamide/adverse effects , Constipation/chemically induced , Constipation/drug therapy , Neurotransmitter Agents , Ethanol/adverse effects
12.
Food Res Int ; 160: 111677, 2022 10.
Article in English | MEDLINE | ID: mdl-36076446

ABSTRACT

Swallowing threshold is a critical parameter that marks the condition of food after mastication in the human mouth being ready to be swallowed. In the current study, a new aspect was investigated in which the food boluses from cooked rice with three moisture contents (52%, 63% and 73% on a wet basis) were masticated and collected just before swallowing by a group of twelve voluntary participants. Both mechanical/textural properties and physicochemical characteristics of the cooked rice and their boluses were investigated. The results show that the oral duration of the cooked rice was positively associated with rice hardness, but negatively correlated with the moisture content of rice boluses. After chewing, the textural properties except cohesiveness and adhesiveness varied little among the rice bolus samples. A significant decrease in the textural parameters was shown for the cooked rice with a low (52%) and middle (63%) moisture content after mastication. In contrast, the decrease was insignificant for the cooked rice having the highest moisture content (73%). Consistently, a negative correlation between the hardness of cooked rice and the amount of soluble reducing sugar in the rice boluses was presented. The salivary impregnation and the particle size distribution of the rice boluses at the swallowing threshold were independent on rice physics (i.e., initial moisture content, texture) and oral physiology. In addition, due to the high efficiency of salivary α-amylase, the starch in cooked rice could be hydrolyzed as much as one-third during oral digestion. The present study suggests that the initial moisture content of cooked rice and mastication conditions such as the presence of α-amylase and salivary impregnation could influence the physicochemical properties of rice boluses at the swallowing threshold. These factors should be carefully considered in future in vitro digestion studies of carbohydrate-based food products.


Subject(s)
Mastication , Oryza , Deglutition/physiology , Humans , Hydrolysis , Mastication/physiology , Oryza/chemistry , Starch/chemistry
13.
Front Aging Neurosci ; 14: 930686, 2022.
Article in English | MEDLINE | ID: mdl-36004001

ABSTRACT

Background: Olfactory impairment is aging related and is associated with cognitive decline in older adults. However, it remains unclear if an olfactory impairment is associated with mild cognitive impairment (MCI) and the degree of impairment in the MCI subtypes. Materials and methods: In a cohort of community-living older adults aged 60 years and above, 670 participants were recruited from the Community Health and Intergenerational (CHI) Study. Olfactory function was assessed using a locally developed nine-item smell test in association with neurocognitive assessments. Analysis of covariance (ANCOVA) was used to examine the association of smell identification score and clinical cognitive status while considering demographic, clinical, and neuropsychological factors with Bonferroni correction for group comparisons. Results: Age-related smell detection between normal aging (NA) and MCI participants had no significant difference. The overall mean smell identification score in older adults was negatively correlated with age. The mean smell identification score of MCI participants was also not significantly different as compared with NA, but an amnestic MCI multiple domain (aMCI_MD) subgroup had significantly lower (impaired) mean smell identification scores compared with the NA and MCI single domain (amnestic and non-amnestic) group. Conclusion: This study demonstrated that olfactory identification impairment is a comorbidity in older adults with amnestic MCI (aMCI) and is a potential marker associated with an early stage of a neurocognitive disorder. The smell test could act as a screening tool to help in the early detection of smell impairment for heterogeneous syndromes of MCI among community-dwelling older adults. Clinicians and researchers could benefit from utilizing the locally developed smell test to screen their patients or research participants before the initiation of an appropriate health intervention or in a clinical trial.

14.
Food Chem ; 396: 133631, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35839722

ABSTRACT

To investigate the impact of superfine grinding of wheat bran on bread quality, antioxidant and nutritional properties, bran with different particle sizes (coarse, D50 of 362.3 µm; medium, 60.4 µm; superfine, 11.3 µm) were produced and fortified to white bread at three levels (10, 20 and 30%). At 20% fortification, compared to coarse bran, superfine bran increased the hardness and reduced the brightness of bread crumb by 56.3 and 3.30%, respectively, while it decreased bread's cell size by 10.7% and insignificantly impacted on bread's specific volume and porosity. Superfine bran retarded bread staling by 8.3% than coarse bran. It resulted in significantly better sensory attributes of bread in taste, texture and general palatability, and the fortified bread was overall acceptable (score > 6). Moreover, faster release of antioxidants (285-353% higher k), slower release of glucose (10.8% lower k), 3.76% less rapidly digestible starch, 5.65% more slowly digestible starch and 13.2% more resistant starch were found in the superfine group than the coarse one. Results demonstrated the potential of 20% fortification of superfine bran in developing fibre-enriched bread with satisfactory quality, increased antioxidant property and improved glycaemic modulation.


Subject(s)
Bread , Dietary Fiber , Antioxidants , Starch , Taste
15.
Foods ; 11(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35681289

ABSTRACT

Different alcoholic beverages and drinking patterns might exert divergent impacts on alcoholic liver disease (ALD) progression. Whether the abundant non-alcoholic components (NAC) in fermented wine could alleviate ethanol (EtOH)-induced adverse influences on the liver remains unknown. Hence, the chronic ALD mouse model was established to compare the effects of Huangjiu (a typical fermented wine) and EtOH feeding on the liver, intestinal barrier, gut microbiota, and intestinal short-chain fatty acids (SCFAs) content. Although Huangjiu intake led to slight hepatic steatosis, it mitigated oxidative stress, inflammation, and intestinal damage relative to EtOH intake. In comparison with EtOH feeding, Huangjiu significantly improved the intestinal barrier integrity and reduced hepatic lipopolysaccharide levels by up-regulating the expression of intestinal tight junction proteins (ZO-1 and occludin) and antimicrobial activity peptides (Reg3ß and Reg3γ). The administration of Huangjiu NAC partially restored alcohol-induced gut microbiota dysbiosis via recovering the abundance of Lactobacillus, Faecalibaculum, and Akkermansia. Moreover, mice receiving Huangjiu showed higher SCFAs levels (such as acetic acid and butyric acid) than those receiving EtOH. Huangjiu consumption resulted in lower hepatotoxicity than pure EtOH, at the same alcohol dose. The NAC in Huangjiu might attenuate the progression of ALD by regulating intestinal barrier function and microbiota-meditated gut ecology.

16.
Adv Food Nutr Res ; 100: 287-328, 2022.
Article in English | MEDLINE | ID: mdl-35659355

ABSTRACT

Over the last several decades, food irradiation technology has been proven neither to reduce the nutritional value of foods more than other preservation technologies, nor to make foods radioactive or dangerous to eat. Furthermore, food irradiation is a non-thermal food processing technology that helps preserve more heat sensitive nutrients than those found in thermally processed foods. Conventional food irradiation technologies, including γ-ray, electron beam and high energy X-ray, have certain limitations and drawbacks, such as involving radioactive isotopes, low penetration ability, and economical unfeasibility, respectively. Owing to the recent developments in instrumentation technology, more compact and cheaper tabletop low-energy X-ray sources have become available. The generation of low-energy X-ray, unlike γ-ray, does not involve radioactive isotopes and the cost is lower than high energy X-ray. Furthermore, low-energy X-ray possesses unique advantages, i.e., high linear energy transfer (LET) value and high relative biological effect (RBE) value. The advantages allow low-energy X-ray irradiation to provide a higher microbial inactivation efficacy than γ-ray and high energy X-ray irradiation. In the last few years, various applications reported in the literature indicate that low-energy X-ray irradiation has a great potential to become an alternative food preservation technique. This chapter discusses the technical advances of low-energy X-ray irradiation, microbial inactivation mechanism, factors influencing its efficiency, current applications, consumer acceptance, and limitations.


Subject(s)
Food Microbiology , Radioisotopes , Microbial Viability , Technology , X-Rays
17.
Adv Food Nutr Res ; 99: 239-281, 2022.
Article in English | MEDLINE | ID: mdl-35595395

ABSTRACT

There has been a growing interest in functional bakery products with enhanced health benefits, especially the prevention of some chronic diseases such as type 2 diabetes, cardiovascular diseases and neurodegenerative disorders. Fortification of wheat flour with phytochemicals, plant components with various bio-activities, is one of the promising approaches to improving public health with the ubiquitous consumption of baked goods. This chapter reviews the current knowledge of several representative phytochemicals, mainly plant polyphenols, including catechins, anthocyanins, fucoidan and quercetin extracted from various plant resources, and their application in bakery products, regarding their stability, impact on product quality and potential health benefits.


Subject(s)
Diabetes Mellitus, Type 2 , Flour , Anthocyanins , Humans , Phytochemicals , Triticum
18.
Adv Food Nutr Res ; 99: ix-x, 2022.
Article in English | MEDLINE | ID: mdl-35595398
19.
Int J Food Microbiol ; 374: 109716, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35605455

ABSTRACT

Pseudomonas fluorescens is a well-known biofilm former on food contact surfaces and can cause severe cross-contamination in food processing premises. This study aimed to determine the inactivation effect of low-energy X-ray on P. fluorescens planktonic cells in phosphate-buffered saline solution (PBS) and P. fluorescens biofilm cells on food-contact-surface (stainless steel). The results demonstrated that low-energy X-ray irradiation at 125 Gy inactivated 4.60 log CFU/mL and 4.21 log CFU/cm2 for P. fluorescens planktonic and biofilm cells, respectively. Based on Weibull model, low-energy X-ray achieved tR1 values of 14.8 Gy and 11.6 Gy for P. fluorescens planktonic and biofilm cells, respectively. Apart from cell inactivation, the irradiation also led to the destruction of extracellular polymeric substances (EPS) structure. Low-energy X-ray irradiation markedly damaged bacterial glucose uptake system and resulted in part loss of bacterial membrane potential and integrity. These results suggested the potential of the low-energy X-ray for inactivating P. fluorescens biofilm cells and removing EPS in food industry.


Subject(s)
Pseudomonas fluorescens , Anti-Bacterial Agents/pharmacology , Biofilms/radiation effects , Plankton , Stainless Steel/pharmacology , X-Rays
20.
Food Funct ; 13(7): 3840-3852, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35315467

ABSTRACT

There is an increasing awareness of the link between food breakdown during chewing and its nutrient release and absorption in the gastrointestinal tract. However, how oral processing behaviour varies among different ethnic groups, and how such difference further impacts on bolus characteristics and consequently glycemic response (GR) are not well understood. In this study, we recruited a group of Asian (Chinese) subjects in China (n = 32) and a group of Caucasian subjects in New Zealand (n = 30), both aged between 18 and 30 years, and compared their blood glucose level (BGL) over 120 min following consumption of a glucose drink and cooked white noodles. We also assessed their chewing behaviour, unstimulated saliva flow rate, and ready-to-swallow bolus characteristics to determine whether these measures explain the ethnic differences in postprandial glycaemia. Compared to New Zealand subjects, the Chinese subjects showed 35% slower saliva flow rate but around 2 times higher salivary α-amylase activity in the unstimulated state. During consumption of noodles, Chinese subjects on average took a larger mouthful size, chewed each mouthful for longer and swallowed a larger number of particles with a smaller particle size area. Total GR measured by area under the curve (IAUC) was higher among the Chinese subjects. They also experienced higher BGL at 15 min, as well as higher peak BGL. There were strong correlations observed between oral processing and GR parameters. Results of this study confirmed the significance of oral processing in determining food digestion, and will provide new insights on the role of ethnicity in influencing people's physiological response to food.


Subject(s)
Blood Glucose , Ethnicity , Adolescent , Adult , Asian People , Blood Glucose/metabolism , China , Humans , Mastication/physiology , New Zealand , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...