Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 297
Filter
1.
Clin Transl Immunology ; 13(6): e1515, 2024.
Article in English | MEDLINE | ID: mdl-38835955

ABSTRACT

Objectives: Primary pulmonary lymphoepithelioma-like carcinoma (PLELC) is a subtype of lung carcinoma associated with the Epstein-Barr virus (EBV). The clinical predictive biomarkers of immune checkpoint blockade (ICB) in PLELC require further investigation. Methods: We prospectively analysed EBV levels in the blood and immune tumor biomarkers of 31 patients with ICB-treated PLELC. Viral EBNA-1 and BamHI-W DNA fragments in the plasma were quantified in parallel using quantitative polymerase chain reaction. Results: Progression-free survival (PFS) was significantly longer in EBNA-1 high or BamHI-W high groups. A longer PFS was also observed in patients with both high plasma EBNA-1 or BamHI-W and PD-L1 ≥ 1%. Intriguingly, the tumor mutational burden was inversely correlated with EBNA-1 and BamHI-W. Plasma EBV load was negatively associated with intratumoral CD8+ immune cell infiltration. Dynamic changes in plasma EBV DNA level were in accordance with the changes in tumor volume. An increase in EBV DNA levels during treatment indicated molecular progression that preceded the imaging progression by several months. Conclusions: Plasma EBV DNA could be a useful and easy-to-use biomarker for predicting the clinical activity of ICB in PLELC and could serve to monitor disease progression earlier than computed tomography imaging.

3.
Cell Death Dis ; 15(5): 326, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729966

ABSTRACT

Single cell RNA sequencing (scRNA-seq), a powerful tool for studying the tumor microenvironment (TME), does not preserve/provide spatial information on tissue morphology and cellular interactions. To understand the crosstalk between diverse cellular components in proximity in the TME, we performed scRNA-seq coupled with spatial transcriptomic (ST) assay to profile 41,700 cells from three colorectal cancer (CRC) tumor-normal-blood pairs. Standalone scRNA-seq analyses revealed eight major cell populations, including B cells, T cells, Monocytes, NK cells, Epithelial cells, Fibroblasts, Mast cells, Endothelial cells. After the identification of malignant cells from epithelial cells, we observed seven subtypes of malignant cells that reflect heterogeneous status in tumor, including tumor_CAV1, tumor_ATF3_JUN | FOS, tumor_ZEB2, tumor_VIM, tumor_WSB1, tumor_LXN, and tumor_PGM1. By transferring the cellular annotations obtained by scRNA-seq to ST spots, we annotated four regions in a cryosection from CRC patients, including tumor, stroma, immune infiltration, and colon epithelium regions. Furthermore, we observed intensive intercellular interactions between stroma and tumor regions which were extremely proximal in the cryosection. In particular, one pair of ligands and receptors (C5AR1 and RPS19) was inferred to play key roles in the crosstalk of stroma and tumor regions. For the tumor region, a typical feature of TMSB4X-high expression was identified, which could be a potential marker of CRC. The stroma region was found to be characterized by VIM-high expression, suggesting it fostered a stromal niche in the TME. Collectively, single cell and spatial analysis in our study reveal the tumor heterogeneity and molecular interactions in CRC TME, which provides insights into the mechanisms underlying CRC progression and may contribute to the development of anticancer therapies targeting on non-tumor components, such as the extracellular matrix (ECM) in CRC. The typical genes we identified may facilitate to new molecular subtypes of CRC.


Subject(s)
Colorectal Neoplasms , Single-Cell Analysis , Transcriptome , Tumor Microenvironment , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Tumor Microenvironment/genetics , Transcriptome/genetics , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Gene Expression Profiling , Male , Female
4.
J Hazard Mater ; 474: 134760, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38820746

ABSTRACT

In this study, we investigated the adsorption of Cd(II) and the biosynthesis of CdS quantum dots (QDs) mediated by cells of sulfate-reducing bacteria before and after the removal of EPS to determine whether EPS or the cell wall plays a major role. Potentiometric titration revealed that the concentration of proton-active binding sites on cells with EPS (EPS-intact) was notably higher than that on cells without EPS (EPS-free) and that the sites were predominantly carboxyl, phosphoryl, hydroxyl, and amine groups. The protein content in EPS-intact cells was higher, and thus the Cd(II) adsorption capacity was stronger. The CdS QDs biosynthesized using EPS-intact possessed better properties, including uniform size distribution, good crystallinity, small particle size, high fluorescence, and strong antimicrobial activity, and the yields were significantly higher than those of EPS-free by a factor of about 1.5-3.7. Further studies revealed that alkaline amino acids in EPS play a major role and serve as templates in the biosynthesis of QDs, whereas they were rarely detected in the cell wall. This study emphasizes the important role of EPS in the bacterial binding of metals and efficient recycling of hazardous waste in water.

5.
Nat Commun ; 15(1): 4665, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821965

ABSTRACT

Minimally invasive thermal therapy is a successful alternative treatment to surgery in solid tumors with high complete ablation rates, however, tumor recurrence remains a concern. Central memory CD8+ T cells (TCM) play important roles in protection from chronic infection and cancer. Here we find, by single-cell RNA analysis of human breast cancer samples, that although the memory phenotype of peripheral CD8+ T cells increases slightly after microwave ablation (MWA), the metabolism of peripheral CD8+ T cells remains unfavorable for memory phenotype. In mouse models, glycolysis inhibition by 2-deoxy-D-glucose (2DG) in combination with MWA results in long-term anti-tumor effect via enhancing differentiation of tumor-specific CD44hiCD62L+CD8+ TCM cells. Enhancement of CD8+ TCM cell differentiation determined by Stat-1, is dependent on the tumor-draining lymph nodes (TDLN) but takes place in peripheral blood, with metabolic remodeling of CD8+ T cells lasting the entire course of the the combination therapy. Importantly, in-vitro glycolysis inhibition in peripheral CD8+ T cells of patients with breast or liver tumors having been treated with MWA thrice leads to their differentiation into CD8+ TCM cells. Our work thus offers a potential strategy to avoid tumor recurrence following MWA therapy and lays down the proof-of-principle for future clinical trials.


Subject(s)
Breast Neoplasms , CD8-Positive T-Lymphocytes , Cell Differentiation , Glycolysis , Immunologic Memory , Microwaves , Glycolysis/drug effects , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , Cell Differentiation/drug effects , Mice , Female , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Microwaves/therapeutic use , Deoxyglucose/pharmacology , Deoxyglucose/therapeutic use , Cell Line, Tumor , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Memory T Cells/immunology , Memory T Cells/metabolism
6.
Heliyon ; 10(9): e30173, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38720722

ABSTRACT

This research investigates the impact of hybrid particles dispersed onto the surface of a copper matrix using Friction Stir Processing (FSP) on its microstructural, mechanical, and corrosion behavior. The hybrid particles under study consist of equal fractions of Aluminium Nitride (AlN) and Boron Nitride (BN). Microstructural characterization confirms breakdown of grain size due to dynamic recrystallization and presence of particles, along with their effective bonding to copper matrix. Attained results indicated a significant enhancement in hardness, with an increase of up to 3.9 % upon the introduction of particles onto the surface. Moreover, the tensile properties exhibit noticeable improvements in terms of ultimate tensile strength (6.39 %) and yield strength (6.12 %), albeit at the expense of reduced ductility in the copper matrix. Furthermore, the wear rate (decreases up to 22 %) and corrosion rate of the developed composites demonstrate a decreasing trend with the introduction of particles. This improvement can be attributed to the reduction in grain size during the FSP process and the formation of a nitride passive layer facilitated by the reinforced hybrid particles, thereby effectively inhibiting the corrosion rate.

7.
Research (Wash D C) ; 7: 0346, 2024.
Article in English | MEDLINE | ID: mdl-38559676

ABSTRACT

Metastasis is the major cause of cancer-related death, and lymph node is the most common site of metastasis in breast cancer. However, the alterations that happen in tumor-draining lymph nodes (TDLNs) to form a premetastatic microenvironment are largely unknown. Here, we first report the dynamic changes in size and immune status of TDLNs before metastasis in breast cancer. With the progression of tumor, the TDLN is first enlarged and immune-activated at early stage that contains specific antitumor immunity against metastasis. The TDLN is then contracted and immunosuppressed at late stage before finally getting metastasized. Mechanistically, B and follicular helper T (Tfh) cells parallelly expand and contract to determine the size of TDLN. The activation status and specific antitumor immunity of CD8+ T cells in the TDLN are determined by interleukin-21 (IL-21) produced by Tfh cells, thus showing parallel changes. The turn from activated enlargement to suppressed contraction is due to the spontaneous contraction of germinal centers mediated by follicular regulatory T cells. On the basis of the B-Tfh-IL-21-CD8+ T cell axis, we prove that targeting the axis could activate TDLNs to resist metastasis. Together, our findings identify the dynamic alterations and regulatory mechanisms of premetastatic TDLNs of breast cancer and provide new strategies to inhibit lymph node metastasis.

8.
Plant Cell Environ ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600785

ABSTRACT

Reactive oxygen species (ROS) and defence hormones like salicylic acid (SA) and jasmonic acid (JA) play pivotal roles in triggering cell death. However, the precise mechanism governing the interaction between ROS and SA/JA remains elusive. Recently, our research revealed that RNAi mutants with suppressed expression of PROGRAMMED CELL DEATH8 (PCD8) exhibit an overabundance of tetrapyrrole intermediates, particularly uroporphyrinogen III (Uro III), leading to the accumulation of singlet oxygen (1O2) during the transition from darkness to light, thereby instigating leaf necrosis. In this investigation, we uncovered that 1O2 stimulates biosynthesis of SA and JA, activating SA/JA signalling and the expression of responsive genes in PCD8 RNAi (pcd8) mutants. Introducing NahG or knocking out PAD4 or NPR1 significantly alleviates the cell death phenotype of pcd8 mutants, while coi1 partially mitigates the pcd8 phenotype. Further exploration revealed that EX1 and GUN1 can partially rescue the pcd8 phenotype by reducing the levels of Uro III and 1O2. Notably, mutations in EX1 mutations but not GUN1, substantially diminish SA content in pcd8 mutants compared to the wild type, implying that EX1 acts as the primary mediator of 1O2 signalling-mediated SA biosynthesis. Moreover, the triple ex1 gun1 pcd8 displays a phenotype similar to ex1. Overall, our findings underscore that the 1O2-induced cell death phenotype requires EX1/GUN1-mediated retrograde signalling in pcd8 mutants, providing novel insights into the interplay between ROS and SA/JA.

9.
NPJ Sci Learn ; 9(1): 32, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637595

ABSTRACT

Neurofeedback (NF) training is a closed-loop brain training in which participants learn to regulate their neural activation. NF training of alpha (8-12 Hz) activity has been reported to enhance working memory capacity, but whether it affects the precision in working memory has not yet been explored. Moreover, whether NF training distinctively influences performance in different types of working memory tasks remains unclear. Therefore, the present study conducted a randomized, single-blind, sham-controlled experiment to investigate how alpha NF training affected the capacity and precision of working memory, as well as the related neural change. Forty participants were randomly and equally assigned to the NF group and the sham control group. Both groups received NF training (about 30 min daily) for five consecutive days. The NF group received alpha (8-12 Hz) training, while the sham control group received sham NF training. We found a significant alpha increase within sessions but no significant difference across sessions. However, the behavioral performance and neural activity in the modified Sternberg task did not show significant change after alpha NF training. On the contrary, the alpha NF training group significantly increased visual working memory capacity measured by the Corsi-block tapping task and improved visual working memory precision in the interference condition in a color-recall task. These results suggest that alpha NF training influences performance in working memory tasks involved in the visuospatial sketchpad. Notably, we demonstrated that alpha NF training improves the quantity and quality of visual working memory.

10.
Micromachines (Basel) ; 15(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38675239

ABSTRACT

The growing need for the multiband photodetection of a single scene has promoted the development of both multispectral coupling and broadband detection technologies. Photodetectors operating across the infrared (IR) to terahertz (THz) regions have many applications such as in optical communications, sensing imaging, material identification, and biomedical detection. In this review, we present a comprehensive overview of the latest advances in broadband photodetectors operating in the infrared to terahertz range, highlighting their classification, operating principles, and performance characteristics. We discuss the challenges faced in achieving broadband detection and summarize various strategies employed to extend the spectral response of photodetectors. Lastly, we conclude by outlining future research directions in the field of broadband photodetection, including the utilization of novel materials, artificial microstructure, and integration schemes to overcome current limitations. These innovative methodologies have the potential to achieve high-performance, ultra-broadband photodetectors.

11.
Food Chem ; 449: 139190, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38579653

ABSTRACT

Linoleic acid (LA) detection and edible oils discrimination are essential for food safety. Recently, CsPbBr3@SiO2 heterostructures have been widely applied in edible oil assays, while deep insights into solvent effects on their structure and performance are often overlooked. Based on the suitable polarity and viscosity of cyclohexane, we prepared CsPbBr3@SiO2 Janus nanoparticles (JNPs) with high stability in edible oil and fast halogen-exchange (FHE) efficiency with oleylammonium iodide (OLAI). LA is selectively oxidized by lipoxidase to yield hydroxylated derivative (oxLA) capable of reacting with OLAI, thereby bridging LA content to naked-eye fluorescence color changes through the anti-FHE reaction. The established method for LA in edible oils exhibited consistent results with GC-MS analysis (p > 0.05). Since the LA content difference between edible oils, we further utilized chemometrics to accurately distinguish (100%) the species of edible oils. Overall, such elaborated CsPbBr3@SiO2 JNPs enable a refreshing strategy for edible oil discrimination.


Subject(s)
Linoleic Acid , Oxides , Plant Oils , Titanium , Oxides/chemistry , Plant Oils/chemistry , Linoleic Acid/chemistry , Calcium Compounds/chemistry , Solvents/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry
12.
Plant Physiol ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38590166

ABSTRACT

Photosynthesis is a major trait of interest for development of high-yield crop plants. However, little is known about the effects of high-density planting on photosynthetic responses at the whole-canopy level. Using the high-yielding maize (Zea mays L.) cultivars 'LY66', 'MC670', and 'JK968', we here conducted a two-year field experiment to assess ear development in addition to leaf characteristics and photosynthetic parameters in each canopy layer at four planting densities. Increased planting density promoted high grain yield and population-scale biomass accumulation despite reduced per-plant productivity. MC670 had the strongest adaptability to high-density planting conditions. Physiological analysis showed that increased planting density primarily led to decreases in the single-leaf area above the ear for LY66 and MC670 and below the ear for JK968. Furthermore, high planting density decreased chlorophyll content and the photosynthetic rate due to decreased canopy transmission, leading to severe decreases in single-plant biomass accumulation in the lower canopy. Moreover, increased planting density improved pre-silking biomass transfer, especially in the lower canopy. Yield showed significant positive relationships with photosynthesis and biomass in the lower canopy, demonstrating the important contributions of these leaves to grain yield under dense planting conditions. Increased planting density led to retarded ear development as a consequence of reduced glucose and fructose contents in the ears, indicating reductions in sugar transport that were associated with limited sink organ development, reduced kernel number, and yield loss. Overall, these findings highlighted the photosynthetic capacities of the lower canopy as promising targets for improving maize yield under dense planting conditions.

13.
PLoS One ; 19(3): e0300504, 2024.
Article in English | MEDLINE | ID: mdl-38484005

ABSTRACT

Direct recycling of aluminum waste is crucial in sustainable manufacturing to mitigate environmental impact and conserve resources. This work was carried out to study the application of hot press forging (HPF) in recycling AA6061 aluminum chip waste, aiming to optimize operating factors using Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Genetic algorithm (GA) strategy to maximize the strength of recycled parts. The experimental runs were designed using Full factorial and RSM via Minitab 21 software. RSM-ANN models were employed to examine the effect of factors and their interactions on response and to predict output, while GA-RSM and GA-ANN were used for optimization. The chips of different morphology were cold compressed into billet form and then hot forged. The effect of varying forging temperature (Tp, 450-550°C), holding time (HT, 60-120 minutes), and chip surface area to volume ratio (AS:V, 15.4-52.6 mm2/mm3) on ultimate tensile strength (UTS) was examined. Maximum UTS (237.4 MPa) was achieved at 550°C, 120 minutes and 15.4 mm2/mm3 of chip's AS: V. The Tp had the largest contributing effect ratio on the UTS, followed by HT and AS:V according to ANOVA analysis. The proposed optimization process suggested 550°C, 60 minutes, and 15.4 mm2 as the optimal condition yielding the maximum UTS. The developed models' evaluation results showed that ANN (with MSE = 1.48%) outperformed RSM model. Overall, the study promotes sustainable production by demonstrating the potential of integrating RSM and ML to optimize complex manufacturing processes and improve product quality.


Subject(s)
Aluminum , Neural Networks, Computer , Temperature , Cold Temperature , Software
16.
Med ; 5(4): 291-310.e5, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38417440

ABSTRACT

BACKGROUND: Immune checkpoint blockade has shown low response rates for advanced breast cancer, and combination strategies are needed. Microwave ablation (MWA) may be a trigger of antitumor immunity. This window-of-opportunity trial (ClinicalTrials.gov: NCT04805736) was conducted to determine the safety and feasibility of preoperative camrelizumab (an anti-PD-1 antibody) combined with MWA in the treatment of early-stage breast cancer. METHODS: Sixty participants were randomized to preoperatively receive single-dose camrelizumab alone (n = 20), MWA alone (n = 20), or camrelizumab+MWA (n = 20). A random number table was used to allocate interventions. The primary outcome was the safety and feasibility of MWA combined with camrelizumab. FINDINGS: Camrelizumab and MWA were well tolerated alone and in combination without delays in prescheduled surgery. No treatment-related grade III/IV adverse events were observed. Different from in the single-dose camrelizumab or MWA group, participants showed stable counts of blood cells after combination therapy. After combination therapy, peripheral CD8+ T cells showed enhanced cytotoxic and effect-memory functions. Clonal expansional CD8+ T cells showed higher cytotoxic activity and effector memory- and tumor-specific signatures than emergent clones after combination therapy. Enhanced interactions between clonal expansional CD8+ T cells and monocytes were observed, suggesting that monocytes contributed to the enhanced functions of clonal expansional CD8+ T cells. Major histocompatibility complex (MHC) class I-related pathways and interferon signaling pathways were activated in monocytes by combination therapy. CONCLUSIONS: Camrelizumab combined with MWA was feasible for early-stage breast cancer. Peripheral CD8+ T cells were activated after combination therapy, dependent on monocytes with activated MHC class I pathways. FUNDING: This study was supported by the Natural Science Foundation of Jiangsu Province (BK20230017).


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/chemically induced , CD8-Positive T-Lymphocytes/metabolism , Microwaves/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects
17.
Plant Physiol ; 194(4): 2400-2421, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38180123

ABSTRACT

Light-induced de-etiolation is an important aspect of seedling photomorphogenesis. GOLDEN2 LIKE (GLK) transcriptional regulators are involved in chloroplast development, but to what extent they participate in photomorphogenesis is not clear. Here, we show that ELONGATED HYPOCOTYL5 (HY5) binds to GLK promoters to activate their expression, and also interacts with GLK proteins in Arabidopsis (Arabidopsis thaliana). The chlorophyll content in the de-etiolating Arabidopsis seedlings of the hy5 glk2 double mutants was lower than that in the hy5 single mutant. GLKs inhibited hypocotyl elongation, and the phenotype could superimpose on the hy5 phenotype. Correspondingly, GLK2 regulated the expression of photosynthesis and cell elongation genes partially independent of HY5. Before exposure to light, DE-ETIOLATED 1 (DET1) affected accumulation of GLK proteins. The enhanced etioplast development and photosystem gene expression observed in the det1 mutant were attenuated in the det1 glk2 double mutant. Our study reveals that GLKs act downstream of HY5, or additive to HY5, and are likely quantitatively adjusted by DET1, to orchestrate multiple developmental traits during the light-induced skotomorphogenesis-to-photomorphogenesis transition in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Hypocotyl , Light , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Seedlings/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
18.
ACS Nano ; 18(5): 4376-4387, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38270109

ABSTRACT

Harvesting atmospheric water and converting it into electricity play vital roles in advancing next-generation energy conversion systems. However, the current water harvester systems suffer from a weak water capture ability and poor recyclability due to high diffusion barriers and low sorption kinetics, which significantly limit their practical application. Herein, we drew inspiration from the natural "Pump effect" observed in wood and successfully developed a dual "absorption-adsorption" networked MXene aerogel atmospheric water harvester (MAWH) through ice templating and confining LiCl processes, thereby serving multiple purposes of clean water production, passive dehumidification, and power generation. The MAWH benefits from the dual H-bond network of MXene and cellulose nanocrystals (absorption network) and the hygroscopic properties of lithium chloride (adsorption network). Furthermore, its aligned wood-like channel structure efficiently eliminates water nucleation near the 3D network, resulting in fast moisture absorption. The developed MAWH demonstrates a high moisture absorption ability of 3.12 g g-1 at 90% relative humidity (RH), featuring rapid vapor transport rates and durable cyclic performance. When compared with commercial desiccants such as the 4A molecular sieve and silica gel, the MAWH can reduce the RH from 80% to 20% within just 6 h. Most notably, our integrated MAWH-based water harvesting-power generation system achieves a high voltage of ∼0.12 V at 77% RH, showcasing its potential for practical application. These developed MAWHs are considered as high-performance atmospheric water harvesters in the water collection and power generation field.

19.
Mol Ecol Resour ; 24(3): e13924, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38197287

ABSTRACT

The advancement of next-generation sequencing (NGS) technologies has been revolutionary for the field of evolutionary biology. This technology has led to an abundance of available genomes and transcriptomes for researchers to mine. Specifically, researchers can mine for various types of molecular markers that are vital for phylogenetic, evolutionary and ecological studies. Numerous tools have been developed to extract these molecular markers from NGS data. However, due to an insufficient number of well-annotated reference genomes for non-model organisms, it remains challenging to obtain these markers accurately and efficiently. Here, we present GeneMiner, an improved and expanded version of our previous tool, Easy353. GeneMiner combines the reference-guided de Bruijn graph assembly with seed self-discovery and greedy extension. Additionally, it includes a verification step using a parameter-bootstrap method to reduce the pitfalls associated with using a relatively distant reference. Our results, using both experimental and simulation data, showed GeneMiner can accurately acquire phylogenetic molecular markers for plants using transcriptomic, genomic and other NGS data. GeneMiner is designed to be user-friendly, fast and memory-efficient. Further, it is compatible with Linux, Windows and macOS. All source codes are publicly available on GitHub (https://github.com/sculab/GeneMiner) and Gitee (https://gitee.com/sculab/GeneMiner) for easy accessibility and transparency.


Subject(s)
Genomics , Software , Phylogeny , Genomics/methods , Computer Simulation , High-Throughput Nucleotide Sequencing/methods , Algorithms , Sequence Analysis, DNA/methods
20.
Clin Breast Cancer ; 24(2): e51-e60, 2024 02.
Article in English | MEDLINE | ID: mdl-37925360

ABSTRACT

PURPOSE: This study aimed to explore a novel position of mammography named axilla view in axillary lymph node (ALN) evaluation in breast cancer. PATIENTS AND METHODS: Patients were prospectively enrolled and scheduled for mammography before surgery. Investigated imaging patterns included mediolateral oblique (2D-MLO) and axilla view (2D-axilla) of mammography, and axilla view of digital breast tomosynthesis (3D-axilla). The correlation of ALN numbers between imaging and pathology was analyzed. Diagnostic performance was analyzed via AUC. RESULTS: 75 patients were included. A larger and clearer axillary region was displayed in axilla view. The total number of ALNs detected under 2D/3D-axilla view was significantly higher than that under 2D-MLO view (4.6 vs. 2.5, P < .001; 5.6 vs. 4.6, P = .034). Correlations between number of positive ALNs detected under 2D/3D-axilla view and pathologically confirmed metastatic ALNs were stronger than 2D-MLO view (Pearson correlation coefficients: 0.7084,0.7044 and 0.4744). The proportion of cases with ≥5 positive ALNs detected under 3D-axilla view was significantly higher than that under 2D-MLO (38.2% vs. 14.7%, P = .028). The overweight and obese group showed a higher AUC value than the underweight and lean group in ALN evaluation, although not significantly (2D-MLO: 0.7643 vs. 0.6458, P = .2656; 2D-axilla: 0.8083 vs. 0.6586, P = .1522; 3D-axilla: 0.8045 vs. 0.6615, P = .1874). This difference was more pronounced in axilla view. CONCLUSION: Axilla view exhibited advantages over conventional MLO view in the extent of axilla displayed by mammography in breast cancer. Further studies with larger sample sizes are needed.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Pilot Projects , Axilla/pathology , Lymphatic Metastasis/diagnostic imaging , Lymphatic Metastasis/pathology , Lymph Nodes/diagnostic imaging , Lymph Nodes/surgery , Lymph Nodes/pathology , Mammography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...