Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Biotechnol Bioeng ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711263

ABSTRACT

Pretreatment is crucial for effective enzymatic saccharification of lignocellulose such as sugarcane bagasse (SCB). In the present study, SCB was pretreated with five kinds of heterogeneous Fenton-like systems (HFSs), respectively, in which α-FeOOH, α-Fe2O3, Fe3O4, and FeS2 worked as four traditional heterogeneous Fenton-like catalysts (HFCs), while FeVO4 worked as a novel HFC. The enzymatic reducing sugar conversion rate was then compared among SCB after different heterogeneous Fenton-like pretreatments (HFPs), and the optimal HFS and pretreatment conditions were determined. The mechanism underlying the difference in saccharification efficiency was elucidated by analyzing the composition and morphology of SCB. Moreover, the ion dissolution characteristics, variation of pH and Eh values, H2O2 and hydroxyl radical (·OH) concentration of FeVO4 and α-Fe2O3 HFSs were compared. The results revealed that the sugar conversion rate of SCB pretreated with FeVO4 HFS reached up to 58.25%, which was obviously higher than that under other HFPs. In addition, the surface morphology and composition of the pretreated SCB with FeVO4 HFS were more conducive to enzymatic saccharification. Compared with α-Fe2O3, FeVO4 could utilize H2O2 more efficiently, since the dissolved Fe3+ and V5+ can both react with H2O2 to produce more ·OH, resulting in a higher hemicellulose and lignin removal rate and a higher enzymatic sugar conversion rate. It can be concluded that FeVO4 HFP is a promising approach for lignocellulose pretreatment.

2.
Environ Sci Pollut Res Int ; 31(20): 30243-30255, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38602640

ABSTRACT

The development of renewable energy is indispensable to promoting the low-carbon transition of power systems. Nevertheless, it also brings uncertainty to the reliability of power systems. Herein, the panel model and panel threshold model are established based on the provincial data in China from 2012 to 2020. The results reveal that the negative effect of renewable energy development (RED) on power supply reliability (PSR) is gradually lessening. If the development of renewable energy is a rational way, power supply reliability can be improved. Additionally, energy-exporting regions bear more risks of RED than energy-importing regions. If the coal prices are stable and natural disasters are manageable, the RED can enhance the PSR. However, if they are not stable or controllable, a high proportion of renewable energy in the power system could cause even more severe problems with PSR. Based on these critical results, some suggestions are made to promote the formation of a new power system.


Subject(s)
Renewable Energy , China , Power Plants , Coal , Electric Power Supplies , Reproducibility of Results
3.
Waste Manag Res ; : 734242X241227368, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297815

ABSTRACT

Liquid fertilizers (LFs) produced by microwave-assisted acid hydrolysis of livestock and poultry wastes were applied to potted hot pepper (Capsicum annuum L.) to evaluate their potential to be used as amino acid LFs. A preliminary experiment was conducted to determine the optimum acid-hydrolysis conditions for producing LFs from a mixture of pig hair and faeces (P) and another mixture of chicken feathers and faeces (C). Two LFs were produced under the optimum acid-hydrolysis conditions (acidification by sulphuric acid (7.5 mol L-1) in a microwave (200 W) for 90 minutes), and a commercial amino acid LF (Guo Guang (GG)) was used for comparison. P, C and GG fertilizers were tested in potted hot pepper cultivation at two doses, whereas no fertilizer application served as the control (CK). P and C fertilizers significantly increased the fruit yield compared with GG fertilizer, particularly at the higher dose. Moreover, the treatments improved the fruit vitamin C and soluble sugar contents in the order of C > P > GG compared with CK. These results could be attributed to more types of amino acids in C fertilizer than in P and GG fertilizers. The results also indicated that the prepared fertilizers could significantly increase the shoot and root dry weight, soil available nitrogen and phosphorus contents and nitrogen, phosphorus, and potassium (NPK) uptake by plants compared with CK. In conclusion, microwave-assisted acid hydrolysis could effectively convert unusable wastes into valuable fertilizers comparable or even superior to commercial fertilizers.

4.
Am J Cardiol ; 211: 343-349, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38141461

ABSTRACT

Transcatheter aortic valve implantation (TAVI) has become a therapeutic treatment for severe symptomatic patients with aortic stenosis. This study aimed to test a novel transcatheter aortic self-expandable bioprosthesis-the ScienCrown system (Lepu Medtech Inc., Beijing, China)-and evaluate the safety of the new device during TAVI. ScienCrown aortic valve implantation was performed on 10 patients. Clinical assessment was performed at baseline, post procedure, and after 1 year. Clinical outcomes and adverse events were assessed according to Valvular Academic Research Consortium-3 criteria. The mean age was 75.30 ± 4.78 years with a mean Society of Thoracic Surgeons score of 4.64 ± 3.23%. Device success was achieved in all patients (80% transfemoral, 20% transapical). After 1 year, there were no deaths, disabling strokes, myocardial infarctions, conversions to surgery, or major procedure-related complications. New pacemaker implantation was required in one patient (10%). ScienCrown implantation resulted in a reduction in mean valve gradient (63.00 ± 18.84 to 9.67 ± 4.97 mm Hg, p <0.001) and an increase in effective orifice area (0.57 ± 0.20 to 2.57 ± 0.59 cm2, p <0.001) at 1 year. Paravalvular leak was absent in 9 patients (90%), and there was a trace in one patient (10%). All patients were in New York Heart Association class I to II at a mean follow-up of 1 year. The experience showed that ScienCrown transcatheter aortic valve system was safely and successfully implanted for treatment of severe symptomatic aortic stenosis. The newer-generation device affords a stable implantation while providing optimal hemodynamic performance.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis , Transcatheter Aortic Valve Replacement , Humans , Aged , Aged, 80 and over , Transcatheter Aortic Valve Replacement/methods , Treatment Outcome , Aortic Valve/surgery , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/etiology , Prosthesis Design
5.
Environ Sci Pollut Res Int ; 30(45): 101026-101034, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37644271

ABSTRACT

Lignocellulosic biomass ash (BA) has certain adsorption and passivation effects on heavy metals, but its function is generally weak. Amino acid salt can facilitate the leaching of heavy metals in soil. Therefore, modification of BA with amino acid salt may realize a higher leaching rate and better passivation of heavy metals in soil. In this study, BA was modified by amino acid hydrolysate obtained from the hydrolysis of chicken feathers by sulfuric acid. The physicochemical properties of BA and modified BA (MBA), their effects on Chinese cabbage (CC) yield and nutritional quality, and passivation effects on soil cadmium (Cd) were compared, and the related mechanisms were investigated. SEM-EDS, XRD, and FTIR demonstrated that BA was a CaCO3-type soil amendment, while MBA was a CaSO4-type soil amendment with the loading of amino acid. Compared with BA, MBA significantly increased the fresh weight, soluble sugar, vitamin C (Vc), and protein contents of CC in both non-Cd contaminated soil and Cd contaminated soil, and obviously decreased the nitrate content and Cd uptake of CC in Cd-contaminated soil. After the application of MBA, cadmium species in potted soil were transformed from higher plant availability, representing by exchangeable and carbonate-bound, into lower plant availability, representing by iron-manganese oxide bound, which was identified as the key reason for the significant reduction of Cd content in CC under MBA application.


Subject(s)
Brassica , Metals, Heavy , Soil Pollutants , Cadmium/analysis , Biomass , Amino Acids , Metals, Heavy/analysis , Soil/chemistry , Brassica/metabolism , Sodium Chloride , Sodium Chloride, Dietary , Soil Pollutants/analysis
6.
Molecules ; 28(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513352

ABSTRACT

Anneslea fragrans Wall., popularly known as "Pangpo tea", is an edible, medicinal, and ornamental plant of the Family Theaceae. The leaves of A. fragrans were historically applied for the treatment of liver and intestinal inflammatory diseases in China. This study aimed to explore the hepatoprotective agents from A. fragrans leaves through hepatoprotective and anti-inflammatory assessment. The phytochemical investigation of the leaves of A. fragrans resulted in the isolation and identification of a total of 18 chemical compounds, including triterpenoids, aliphatic alcohol, dihydrochalcones, chalcones, flavanols, phenolic glycoside, and lignans. Compounds 1-2, 4-6, 11-12, and 16-18 were identified from A. fragrans for the first time. Compounds 7 and 14 could significantly alleviate hepatocellular damage by decreasing the contents of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and inhibit the hepatocellular apoptosis in the HepG2 cells induced by N-acetyl-p-aminophenol (APAP). In addition, compounds 7 and 14 inhibited reactive oxygen species (ROS) and malondialdehyde (MDA) contents and increased the catalase (CAT) superoxide dismutase (SOD), and glutathione (GSH) levels for suppressing APAP-induced oxidative stress. Additionally, compounds 7, 13, and 14 also had significant anti-inflammatory effects by inhibiting interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) productions on LPS-induced RAW246.7 cells.


Subject(s)
Antioxidants , Chemical and Drug Induced Liver Injury , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress , Liver , Protective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Glutathione/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Aspartate Aminotransferases/metabolism , Alanine Transaminase/metabolism
7.
Environ Sci Pollut Res Int ; 30(40): 92135-92145, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37481500

ABSTRACT

The inter-regional ultra-high voltage (UHV) projects are crucial for power systems. Carbon emissions associated with the power sector cannot be ignored. In this paper, based on the panel data of 198 prefecture-level cities in China from 2009 to 2019, a multi-period difference-in-difference model is developed for the first time to examine the impact of UHV projects on carbon emissions. Empirical results show that UHV projects increase overall carbon emissions. This impact can also be achieved through the mechanisms of the scale of power generation and the level of economic development. Heterogeneity research demonstrates that the carbon emissions issue of UHV projects is more significant in cities with low levels of economic development and a large proportion of secondary industries. Extensibility research shows that UHV projects have a more significant impact on carbon emissions in power-sending cities than that in power-receiving cities. The more clean power the UHV transmission lines transmit, the less impact on carbon emissions. This study not only enhances our understanding about the impact of UHV projects on carbon emissions, but also provides inspiration for the low-carbon pathway transition.


Subject(s)
Carbon , Economic Development , China , Cities , Industry
8.
Phytomedicine ; 115: 154854, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37156058

ABSTRACT

BACKGROUND: Liver fibrosis is a crucial progress to deteriorate liver disease. E Se tea (ES) is an ethnic herbal tea in China that has various biological activities for human beings. However, the traditional application on the treatment of liver disease is not studied. PURPOSE: This study is firstly performed to explore the chemical constituents of ES extract together with its anti-hepatic fibrosis effect and potential mechanism on CCl4 treated mice. STUDY DESIGN AND METHODS: The chemical constituents of ethanol-aqueous extract from ES (ESE) were analyzed by UPLC-ESI-MS/MS. The anti-hepatic fibrosis effect of ESE was determined by measuring ALT and AST activities, antioxidative indexes, inflammatory cytokines and collagen protein levels on CCl4 treated mice. Moreover, H&E, Masson staining and immunohistochemical analysis were performed for evaluating the protective effect of ESE on histopathological changes of liver tissues. RESULTS: UHPLCHRESI-MS/MS analysis showed that the ESE was rich in flavonoids such as phlorizin, phloretin, quercetin and hyperoside. ESE could significantly reduce the plasma AST and ALT activities. The cytokines (IL-6, TNF-α, IL-1ß) expressions were inhibited after ESE administration via suppressing NF-κB pathway. In addition, ESE could decrease MDA accumulation for alleviating CCl4 induced liver oxidative stress via regulating Nrf2 pathway to promote the expressions of antioxidant enzymes (SOD, HO-1, CAT and NQO1). Moreover, ESE could inhibit the expressions of TGF-ß1, Smad2, α-SMA, and collagens Ⅰ and III proteins, thereby effectively alleviate the liver fibrosis. CONCLUSION: This study demonstrated that ESE could alleviate liver fibrosis through enhancing antioxidant and anti-inflammatory abilities by Nrf2/NF-κB pathway and reducing deposition of liver fibrosis via suppressing TGF-ß/Smad pathway.


Subject(s)
NF-kappa B , Transforming Growth Factor beta1 , Rats , Humans , Mice , Animals , NF-kappa B/metabolism , Transforming Growth Factor beta1/metabolism , NF-E2-Related Factor 2/metabolism , Antioxidants/metabolism , Tandem Mass Spectrometry , Signal Transduction , Rats, Sprague-Dawley , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver , Cytokines/metabolism , Tea , Carbon Tetrachloride/toxicity
9.
Sci Total Environ ; 884: 163887, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37142006

ABSTRACT

Cellulose can be modified for the loading of functional groups such as amino groups, sulfydryl groups, and carboxyl groups. Cellulose-modified adsorbents generally have specific adsorption capacities for either heavy metal anions or cations, and possess the advantages of wide raw material source, high modification efficiency, high adsorbent recyclability, and great convenience in recovery of the adsorbed heavy metals. At present, preparation of amphoteric heavy metal adsorbents from lignocellulose has attracted great attention. However, the difference in efficiency of preparing heavy metal adsorbents by modification of various plant straw materials and mechanism for the difference remain to be further explored. In this study, three plant straws, including Eichhornia crassipes (EC), sugarcane bagasse (SB) and metasequoia sawdust (MS), were sequentially modified by tetraethylene-pentamine (TEPA) and biscarboxymethyl trithiocarbonate (BCTTC) to obtain amphoteric cellulosic adsorbents (EC-TB, SB-TB and MS-TB, respectively), which can simultaneously adsorb heavy metal cations or anions. The heavy metal adsorption properties and mechanism before and after modification were compared. Pb(II) and Cr(VI) removal rates by the three adsorbents were 2.2-4.3 folds and 3.0-13.0 folds of those before modification, respectively, following the order of MS-TB > EC-TB > SB-TB. In the five-cycle adsorption-regeneration test, the Pb(II) and Cr(VI) removal rate by MS-TB decreased by 58.1 % and 21.5 %, respectively. Among the three plant straws, MS possessed the most abundant hydroxyl groups and the largest specific surface area (SSA), and accordingly MS-TB had the highest load of adsorption functional groups [(C)NH, (S)CS and (HO)CO] and also the largest SSA among the three adsorbents, which contribute to its highest modification and adsorption efficiency. This study is of great significance for screening suitable raw plant materials to prepare amphoteric heavy metal adsorbents with superior adsorption performance.


Subject(s)
Eichhornia , Metals, Heavy , Saccharum , Water Pollutants, Chemical , Cellulose , Adsorption , Lead , Plants , Anions , Cations , Kinetics
11.
Nat Prod Res ; 37(9): 1536-1543, 2023 May.
Article in English | MEDLINE | ID: mdl-35018880

ABSTRACT

Seven diterpenes including two new seco-cembranoid basmanoids A (1) and B (2), and two new labdane basmadanes A (3) and B (4), and three known compounds (-)-dehydro-nor-ambreinolid (5), (13E)-8-hydroxy-13-labden-12-one (6), and 14,15,16-dinor-7-oxolabda-8-ene-13-oic acid (7) were isolated from oriental tobacco Nicotiana tabacum 'YNOTBS1'. Compounds 1-3 and 5 showed anti-tobacco mosaic virus (TMV) activity with inhibition rates in the range of 30-69% at the concentration of 1 mg/mL. However, none of them exhibited any inhibitory effects against nitric oxide (NO) production in LPS and IFN-γ-induced RAW 264.7 murine macrophages and anti-proliferative activities against cancer cell lines SMMC-7721 and A-549.


Subject(s)
Diterpenes , Tobacco Mosaic Virus , Animals , Mice , Molecular Structure , Nicotiana , Cell Line, Tumor , Diterpenes/pharmacology
12.
Nat Prod Res ; 36(6): 1536-1542, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33567911

ABSTRACT

Phytochemical investigation of Melodinus fusiformis led to a new aspidosperma-aspidosperma bisindole alkaloid (BIA), bis-19ß-hydroxyvenalstonidine (1), together with three known BIAs (2-4). The structures were established by extensive analysis of their HRESIMS, NMR data, and comparing with the reported data. BIA 1 is an almost symmetrical structure, linked by C3-C14' bond, while BIAs 2-4 are reported for the first time from the plant. The cytotoxic, immunosuppressive and anti-inflammatory activities of BIAs 1-4 were evaluated in vitro. BIAs 1, 3 and 4 showed good toxicity against MOLT-4 cell lines with IC50 values in the range of 1.5-17.5 -M. BIA 2 exhibited the strongest inhibitory effect against MCF-7 cell lines with an IC50 value of 7.1 µM. BIA 1 significantly inhibited Con A-stimulated mice splenocytes proliferation equal to that of the positive control (DXM) in a concentration-dependent manner. BIAs 1 and 2 were able to decrease the NO production in LPS-induced RAW 264.7 cells at 30 µM concentration. BIA 2 showed similar inhibition of nitric oxide release, compared to that of DXM. Furthermore, BIA 2 remarkably inhibited the levels of IL-6 and TNF-α compared to the LPS induced group. Interestingly, BIA 2 displayed an inhibitory effect on TNF-α production similar to that of dexamethasone at a concentration of 20 µM.


Subject(s)
Alkaloids , Apocynaceae , Alkaloids/chemistry , Alkaloids/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Apocynaceae/chemistry , Mice , Molecular Structure , Phytochemicals/pharmacology
13.
J Asian Nat Prod Res ; 24(1): 59-65, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33511869

ABSTRACT

Two new sesquiterpene aryl esters, armimelleolides A and B (1 and 2), and four known ones, were isolated from the EtOAc extract of Armillaria gallica 012 m by column chromatography on silica gel, reversed-phase C18 silica gel and semi-preparative HPLC. Their structures were elucidated on the basis of spectroscopic methods, including extensive 1 D NMR, 2 D NMR and MS. All these compounds showed potential antitumor activities against at least one of the human cancer cell lines (A549, HCT-116, M231 and W256), with IC50 ranging from 2.57 to 19.94 µM.


Subject(s)
Armillaria , Sesquiterpenes , Esters , Molecular Structure , Sesquiterpenes/pharmacology
14.
PeerJ ; 8: e9267, 2020.
Article in English | MEDLINE | ID: mdl-32566397

ABSTRACT

BACKGROUND: Untreated wastewater carries substantial amount of heavy metals and causes potential ecological risks to the environment, food quality, soil health and sustainable agriculture. METHODOLOGY: In order to reduce the incidence of nickel (Ni2+) contamination in soils, two separate experiments (incubation and greenhouse) were conducted to investigate the potentials of rice straw biochar and elemental sulfur in remediating Ni2+ polluted soil due to the irrigation with wastewater. Five incubation periods (1, 7, 14, 28 and 56 days), three biochar doses (0, 10 and 20 g kg-1 of soil) and two doses of sulfur (0 and 5 g kg-1 of soil) were used in the incubation experiment then the Ni2+ was extracted from the soil and analyzed, while ryegrass seeds Lolium perenne L. (Poales: Poaceae) and the same doses of biochar and sulfur were used in the greenhouse experiment then the plants Ni2+-uptake was determined. RESULTS: The results of the incubation experiment revealed a dose-dependent reduction of DTPA-extractable Ni2+ in soils treated with biochar. Increasing the biochar dose from 0 g kg-1 (control) to 10 or 20 g kg-1 (treatments) decreased the DTPA-extractable Ni2+ from the soil by 24.6% and 39.4%, respectively. The application of sulfur increased the Ni2+-uptake by ryegrass plant which was used as hyper-accumulator of heavy metals in the green house experiment. However, the biochar decreased the Ni2+-uptake by the plant therefore it can be used as animal feed. CONCLUSIONS: These results indicate that the biochar and sulfur could be applied separately to remediate the Ni2+-contaminated soils either through adsorbing the Ni2+ by biochar or increasing the Ni2+ availability by sulfur to be easily uptaken by the hyper-accumulator plant, and hence promote a sustainable agriculture.

15.
Int J Biol Macromol ; 149: 1207-1212, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32018006

ABSTRACT

Species in Hymenoptera usually show exceptionally high rates of mitochondrial molecular evolution and dramatic gene rearrangements, which has been attributed to their parasitic lifestyle. However, mitochondrial genome (mitogenome) of chalcidoid wasps is still poorly understood and the evolution of gene rearrangements is still unclear. In this study, the nearly complete mitogenome of Pachyneuron aphidis, a chalcidoid wasp mainly hyperparasitizes the Aphidius gifuensis, was sequenced using a next-generation sequencing strategy. This genome is 15,137 bp in length, including 13 PCGs, 22 tRNAs, two rRNAs and a partial control region. Alignment with other Chalcidoidea mitogenomes revealed a novel inversion in the srRNA-trnV gene cluster in P. aphidis, which is the first of its kind to be reported in Chalcidoidea. Breakpoint distances analysis showed the high value of chalcidoid wasps compare to the ancestral arrangement pattern, which reflected as extensive gene rearrangements. Despite the high frequency of gene rearrangements in these insects, analyses of gene rearrangement and phylogenetic trees showed that species from the same family and the genus tent to have similar gene orders, and the conserved gene blocks (ND3-trnG, srRNA-trnV and COIII-ATP6-ATP8-trnD-trnK-COII-trnL2-COI) can usually be identified, especially at the family level of chalcidoid wasps.


Subject(s)
Gene Rearrangement , Genome, Mitochondrial , Wasps/genetics , Animals , Base Composition/genetics , Phylogeny
16.
Environ Pollut ; 260: 114018, 2020 May.
Article in English | MEDLINE | ID: mdl-31991343

ABSTRACT

Bacteria involved with ecosystem N cycling in the rhizosphere of submerged macrophytes are abundant and diverse. Any declines of submerged macrophytes can have a great influence on the abundance and diversity of denitrifying bacteria and anammox bacteria. Natural decline, tardy decline, and sudden decline methods were applied to cultivated Potamogeton crispus. The abundance of anammox bacteria and nirS denitrifying bacteria in rhizosphere sediment were detected using real-time fluorescent quantitative PCR of 16S rRNA, and phylogenetic trees were constructed to analyze the diversities of these two microbes. The results indicated that the concentration of NH4+ in pore water gradually increased with increasing distances from the roots, whereas, the concentration of NO3- showed a reverse trend. The abundance of anammox bacteria and nirS denitrifying bacteria in sediment of declined P. crispus populations decreased significantly over time. The abundance of these two microbes in the sudden decline group were significantly higher (P > 0.05) than the other decline treatment groups. Furthermore, the abundances of these two microbes were positively correlated, with RDA analyses finding the mole ratio of NH4+/NO3- being the most important positive factor affecting microbe abundance. Phylogenetic analysis indicated that the anammox bacteria Brocadia fuigida and Scalindua wagneri, and nirS denitrifying bacteria Herbaspirillum and Pseudomonas, were the dominant species in declined P. crispus sediment. We suggest the sudden decline of submerged macrophytes would increase the abundance of anammox bacteria and denitrifying bacteria in a relatively short time.


Subject(s)
Denitrification/physiology , Potamogetonaceae , Rhizosphere , Bacteria , Ecosystem , Geologic Sediments , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S
17.
In Vitro Cell Dev Biol Anim ; 55(6): 426-435, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31140103

ABSTRACT

Breast cancer ranks as the top reason for the oncologic mortality for female around the world. The occurrence rate of breast cancer is rapidly rising, especially in China. Although the therapeutic regimes for breast cancer are diverse, the treatment outcome in patients remains dismal. Long non-coding RNAs have been greatly reported as important participators in cancer progression during the past decades. FBXL19 antisense RNA 1 (FBXL19-AS1) has been identified as a novel oncogene in colorectal cancer recently, but its role in breast cancer remains unknown. Present study attempted to explore the functional role and mechanism of FBXL19-AS1 in breast cancer progression. Expression of FBXL19-AS1, lin-28 homolog A (LIN28A), and WD repeat domain 66 (WDR66) were detected by qPCR and Western blotting. Transwell assay was used to detect cell migration and invasion. RIP assay was used to examine interaction between LIN28A and FBXL19-AS1. First, FBXL19-AS1 was highly expressed in breast cancer cell lines. Loss-of-function assays indicated that FBXL19-AS1 promoted cell migration, invasion, and EMT in breast cancer. Mechanistically, FBXL19-AS1 interacted with and was stabilized by LIN28A, an RNA-binding protein which has been reported to be able to stabilize lncRNAs. Moreover, WDR66 expression was promoted by FBXL19-AS1 at mRNA and protein level. Finally, rescue assays suggested that FBXL19-AS1 promoted migration, invasion, and EMT through regulating WDR66 in breast cancer. Current study proved that LIN28A-stabilized FBXL19-AS1 promoted breast cancer metastasis by regulating WDR66, identifying FBXL19-AS1 as a new biological marker in breast cancer.


Subject(s)
Breast Neoplasms/genetics , Calcium-Binding Proteins/genetics , Epithelial-Mesenchymal Transition/genetics , RNA-Binding Proteins/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Oncogenes , RNA Stability , RNA, Antisense , RNA-Binding Proteins/metabolism
18.
Bioresour Technol ; 285: 121343, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31004952

ABSTRACT

This study compared enzymatic saccharification of sugarcane bagasse (SCB) after application of two different pretreatment methods, Fenton pretreatment (FP) and BiFeO3 Fenton-like pretreatment (BFP). The composition, morphology and structural properties of SCB with different pretreatments were analyzed. Results showed that, after BFP, the yield of reducing sugar of SCB under enzymatic saccharification for 72 h was 25.8%, and the sugar conversion rate was 36.6%, which were 2.2 and 2.4-fold those of the FP, respectively. Moreover, the removal of hemicellulose and delignification in the BFP was more severe than that in the FP. The determination of hydroxyl radical (OH) in the two different Fenton processes revealed that the OH generated in the BiFeO3 Fenton-like system was higher in concentration and longer in action time than that in the Fenton system, which was likely key to the stronger effect of BFP than FP on the enzymatic saccharification of SCB.


Subject(s)
Saccharum , Bismuth , Cellulose , Ferric Compounds , Hydrolysis
19.
J Cell Biochem ; 120(5): 7952-7961, 2019 May.
Article in English | MEDLINE | ID: mdl-30456805

ABSTRACT

It has been proved that long noncoding RNAs (lncRNAs) are important modulators in the tumorigenesis and progression of various malignant tumors. Recently, lncRNA FOXD2-AS1 has been reported to be an oncogene in several kinds of human cancers. However, the function of FOXD2-AS1 in papillary thyroid cancer (PTC) has not been well investigated. This study aims to explore the biological role and mechanism of FOXD2-AS1 in PTC. At first, the expression of FOXD2-AS1 was examined in PTC tissues and cell lines with quantitative reverse transcription-polymerase chain reaction (qRT-PCR). FOXD2-AS1 was found to observably upregulated in PTC tissues and cell lines. Kaplan-Meier survival analysis revealed that high expression of FOXD2-AS1 was closely correlated with the unfavorable prognosis of patients with PTC. Based on the TCGA data set, KLK7 was overexpressed in PTC tumor samples. Our experimental data further validated the upregulation of KLK7 in PTC tissues and cell lines. Similarly, high level of KLKF was associated with poor prognosis of patients with PTC. The positive expression association between FOXD2-AS1 and KLK7 was analyzed with Pearson correlation coefficient. Loss-of-function assays revealed that knockdown of FOXD2-AS1 or KLK7 greatly inhibited PTC cell proliferation and migration, while induced cell apoptosis. Results of mechanism experiments suggested that FOXD2-AS1 functioned as a competing endogenous RNA (ceRNA) to enhance the expression of KLK7 by sponging miR-485-5p in PTC. Rescue assays were conducted to verify the function of FOXD2-AS1/miR-485-5p/KLK7 axis in PTC progression.

20.
PeerJ ; 6: e6041, 2018.
Article in English | MEDLINE | ID: mdl-30533317

ABSTRACT

BACKGROUND: The nitrite-dependent anaerobic methane oxidation (N-DAMO) pathway, which plays an important role in carbon and nitrogen cycling in aquatic ecosystems, is mediated by "Candidatus Methylomirabilis oxyfera" (M. oxyfera) of the NC10 phylum. M. oxyfera-like bacteria are widespread in nature, however, the presence, spatial heterogeneity and genetic diversity of M. oxyfera in the rhizosphere of aquatic plants has not been widely reported. METHOD: In order to simulate the rhizosphere microenvironment of submerged plants, Potamogeton crispus was cultivated using the rhizobox approach. Sediments from three compartments of the rhizobox: root (R), near-rhizosphere (including five sub-compartments of one mm width, N1-N5) and non-rhizosphere (>5 mm, Non), were sampled. The 16S rRNA gene library was used to investigate the diversity of M. oxyfera-like bacteria in these sediments. RESULTS: Methylomirabilis oxyfera-like bacteria were found in all three sections, with all 16S rRNA gene sequences belonging to 16 operational taxonomic units (OTUs). A maximum of six OTUs was found in the N1 sub-compartment of the near-rhizosphere compartment and a minimum of four in the root compartment (R) and N5 near-rhizosphere sub-compartment. Indices of bacterial community diversity (Shannon) and richness (Chao1) were 0.73-1.16 and 4-9, respectively. Phylogenetic analysis showed that OTU1-11 were classified into group b, while OTU12 was in a new cluster of NC10. DISCUSSION: Our results confirmed the existence of M. oxyfera-like bacteria in the rhizosphere microenvironment of the submerged plant P. crispus. Group b of M. oxyfera-like bacteria was the dominant group in this study as opposed to previous findings that both group a and b coexist in most other environments. Our results indicate that understanding the ecophysiology of M. oxyfera-like bacteria group b may help to explain their existence in the rhizosphere sediment of aquatic plant.

SELECTION OF CITATIONS
SEARCH DETAIL
...