Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 852
Filter
1.
Muscle Nerve ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828855

ABSTRACT

INTRODUCTION/AIMS: The current diagnosis of ulnar neuropathy at the elbow (UNE) relies mainly on the clinical presentation and nerve electrodiagnostic (EDX) testing, which can be uncomfortable and yield false negatives. The aim of this study was to investigate the diagnostic value of conventional ultrasound, shear wave elastography (SWE), and superb microvascular imaging (SMI) in diagnosing UNE. METHODS: We enrolled 40 patients (48 elbows) with UNE and 48 healthy volunteers (48 elbows). The patients were categorized as having mild, moderate or severe UNE based on the findings of EDX testing. The cross-sectional area (CSA) was measured using conventional ultrasound. Ulnar nerve (UN) shear wave velocity (SWV) and SMI were performed in a longitudinal plane. RESULTS: Based on the EDX findings, UNE severity was graded as mild in 4, moderate in 10, and severe in 34. The patient group showed increased ulnar nerve CSA and stiffness at the site of maximal enlargement (CSA mean at the site of max enlargement [CSAmax] and SWV mean at the site of max enlargement [SWVmax]), ulnar nerve CSA ratio, and stiffness ratio (elbow-to-upper arm), compared with the control group (p < .001). Furthermore, the severe UNE group showed higher ulnar nerve CSAmax and SWVmax compared with the mild and moderate UNE groups (p < .001). The cutoff values for diagnosis of UNE were 9.5 mm2 for CSAmax, 3.06 m/s for SWVmax, 2.00 for CSA ratio, 1.36 for stiffness ratio, and grade 1 for SMI. DISCUSSION: Our findings suggest that SWE and SMI are valuable diagnostic tools for the diagnosis and assessment of severity of UNE.

2.
J Ethnopharmacol ; : 118418, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838926

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bronchitis is a respiratory disease characterized by a productive cough. Polygala tenuifolia Willd., commonly known as Yuan zhi, is a traditional Chinese herbal medicine used for relieving cough and removing phlegm. Despite its historical use, studies are lacking on the effectiveness of P. tenuifolia in treating bronchitis. Furthermore, the molecular mechanisms underlying the action of its bioactive compounds remain unknown. AIM OF THE STUDY: This study aims to identify the main bioactive compounds responsible for the effects of P. tenuifolia liquid extract (PLE) in treating bronchitis and to elucidate the associated molecular mechanisms. MATERIALS AND METHODS: The main chemical compounds in PLE were identified and determined using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The antitussive, expectorant and anti-inflammatory activities of PLE were evaluated in an ammonia-induced mouse cough model, a tracheal phenol red excretion mouse model, and a xylene-induced ear swelling mouse model, respectively. A network pharmacology analysis was conducted to investigate the associated gene targets, gene ontology, and KEGG pathways related to the main bio-actives in PLE targeting bronchitis. PLE and its five bioactive compounds were assessed for their potential anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Western blot analysis was conducted to elucidate the associated molecular mechanisms. RESULTS: Thirty-seven compounds in PLE were identified, and twelve main compounds were further quantified in PLE using UPLC-MS/MS. PLE oral gavage administrations (0.6 and 0.12 mg/kg) for 7 days markedly reduced cough frequency, prolonged latency period of cough, reduced phlegm and inflammation in mice. The network pharmacology analysis identified 57 gene targets of PLE against bronchitis. The PI3K/AKT and MAPK signalling pathways were the top two modulated pathways. In RAW264.7 cells, PLE (12.5-50 µg/mL) significantly reduced cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α. PLE downregulated LPS-elevated protein targets in both PI3K/AKT and MAPK signaling pathways. In PLE, tenuifolin, polygalaxanthone ⅠⅠⅠ, polygalasaponin ⅩⅩⅤⅢ, tenuifoliside B, and 3,6'-Disinapoyl sucrose, were identified as the top five core components responsible for treating bronchitis. These compounds were also found to modulate the protein targets in the PI3K/AKT and MAPK signalling pathways. CONCLUSIONS: This study demonstrated the potential therapeutic effects of PLE on bronchitis by reducing cough, phlegm and inflammation. The anti-inflammatory action and molecular mechanisms of the 5 main bioactive compounds in PLE were partly validated through the in vitro assays. The findings provide valuable insights into the mechanisms underlying the traditional use of PLE for bronchitis.

3.
BMC Plant Biol ; 24(1): 370, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714932

ABSTRACT

BACKGROUND: Nymphaea (waterlily) is known for its rich colors and role as an important aquatic ornamental plant globally. Nymphaea atrans and some hybrids, including N. 'Feitian 2,' are more appealing due to the gradual color change of their petals at different flower developmental stages. The petals of N. 'Feitian 2' gradually change color from light blue-purple to deep rose-red throughout flowering. The mechanism of the phenomenon remains unclear. RESULTS: In this work, flavonoids in the petals of N. 'Feitian 2' at six flowering stages were examined to identify the influence of flavonoid components on flower color changes. Additionally, six cDNA libraries of N. 'Feitian 2' over two blooming stages were developed, and the transcriptome was sequenced to identify the molecular mechanism governing petal color changes. As a result, 18 flavonoid metabolites were identified, including five anthocyanins and 13 flavonols. Anthocyanin accumulation during flower development is the primary driver of petal color change. A total of 12 differentially expressed genes (DEGs) in the flavonoid biosynthesis pathway were uncovered, and these DEGs were significantly positively correlated with anthocyanin accumulation. Six structural genes were ultimately focused on, as their expression levels varied significantly across different flowering stages. Moreover, 104 differentially expressed transcription factors (TFs) were uncovered, and three MYBs associated with flavonoid biosynthesis were screened. The RT-qPCR results were generally aligned with high-throughput sequencing results. CONCLUSIONS: This research offers a foundation to clarify the mechanisms underlying changes in the petal color of waterlilies.


Subject(s)
Flavonoids , Flowers , Gene Expression Regulation, Plant , Nymphaea , Transcriptome , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Flavonoids/biosynthesis , Flavonoids/metabolism , Nymphaea/genetics , Nymphaea/metabolism , Pigmentation/genetics , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Gene Expression Profiling , Color
4.
Front Pharmacol ; 15: 1359866, 2024.
Article in English | MEDLINE | ID: mdl-38803432

ABSTRACT

Objective: This study aimed to conduct the first meta-analysis to comprehensively evaluate the clinical effectiveness and safety of Xiaochaihu Decoction in treating Cancer-related Fever (CRF). Methods: Eight databases were systematically searched in September 2023. The risk of bias (ROB) 2.0 tool recommended by Cochrane Handbook was applied to evaluate the ROB of the included randomized controlled trials (RCTs). Additionally, the quality of evidence was assessed using the Grading of recommendations assessment, development and evaluation (GRADE) tool. Results: We included 18 RCTs involving 1,424 patients. Compared to Western medicine or Xinhuang Tablets, Xiaochaihu Decoction significantly improved clinical effectiveness in CRF patients (risk ratio [RR] = 1.24, 95% confidence interval [CI]: 1.17, 1.32) and expedited the normalization of body temperature (mean difference [MD] = -5.29, 95%CI: -5.59, -4.99). It also demonstrated a reduction in tumor necrosis factor-α (TNF-α) levels (MD = -0.63, 95%CI: -0.84, -0.41) and an increase in IL-2 levels (MD = 1.42, 95%CI: -1.09, 1.74). Analysis of Karnofsky Performance Status (KPS) scores showed that the use of Xiaochaihu Decoction improved the quality of life in CRF patients (RR = 1.57, 95%CI: 1.11, 2.22) and reduced the incidence of adverse events. However, it is important to note that the majority of included studies showed "some concerns" in risk of bias based on ROB 2.0, and the evidence quality assessed by GRADE method was rated as "low". Conclusion: While this study suggests the clinical effectiveness and safety of Xiaochaihu Decoction in treating patients with CRF, confirming these findings will necessitate additional high-quality, large-scale RCTs in future research. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023484068.

5.
Nat Plants ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740943

ABSTRACT

In plants, the rapid accumulation of proline is a common response to combat abiotic stress1-7. Delta-1-pyrroline-5-carboxylate synthase (P5CS) is a rate-limiting enzyme in proline synthesis, catalysing the initial two-step conversion from glutamate to proline8. Here we determine the first structure of plant P5CS. Our results show that Arabidopsis thaliana P5CS1 (AtP5CS1) and P5CS2 (AtP5CS2) can form enzymatic filaments in a substrate-sensitive manner. The destruction of AtP5CS filaments by mutagenesis leads to a significant reduction in enzymatic activity. Furthermore, separate activity tests on two domains reveal that filament-based substrate channelling is essential for maintaining the high catalytic efficiency of AtP5CS. Our study demonstrates the unique mechanism for the efficient catalysis of AtP5CS, shedding light on the intricate mechanisms underlying plant proline metabolism and stress response.

6.
BMC Pediatr ; 24(1): 353, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778302

ABSTRACT

BACKGROUND: For adolescents, abnormal dipping patterns in blood pressure (BP) are associated with early-onset organ damage and a higher risk of cardiovascular disorders in adulthood. Obesity is one of the most common reasons for abnormal BP dipping in young people. However, it is unknown whether the severity of obesity is associated with BP dipping status and whether this association is sex-dependent. METHODS: 499 participants between 12 and 17 years old with overweight or obesity underwent ambulatory blood pressure monitoring (ABPM) between April 2018 and January 2019 in Beijing and Baoding. Participants were grouped by body mass index (BMI) into overweight (BMI 85th-95th percentile), obese (BMI ≥ 95th percentile) and severely obese (BMI ≥ 120% of 95th percentile or ≥ 35 kg/m2) groups. Non-dipping was defined as a < 10% reduction in BP from day to night. The interaction effect between sex and obesity degree was also analyzed. RESULTS: 326 boys and 173 girls were included, of whom 130 were overweight, 189 were obese, and 180 were severely obese. Girls with severe obesity had a higher prevalence of non-dipping, but boys showed no significant differences in BP dipping status between obesity categories. In addition, as obesity severity went up, a more evident increase in night-time SBP was observed in girls than in boys. CONCLUSIONS: Severely obese is associated with a higher prevalence of non-BP dipping patterns in girls than in boys, which suggests that the relationship between the severity of obesity and BP dipping status might be sex-specific.


Subject(s)
Blood Pressure Monitoring, Ambulatory , Blood Pressure , Circadian Rhythm , Pediatric Obesity , Humans , Female , Adolescent , Male , Blood Pressure/physiology , Sex Factors , Pediatric Obesity/complications , Pediatric Obesity/physiopathology , Pediatric Obesity/epidemiology , Child , Circadian Rhythm/physiology , Adiposity , Overweight/complications , Overweight/epidemiology , Body Mass Index , China/epidemiology , Severity of Illness Index , Cross-Sectional Studies
7.
Curr Med Chem ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38818915

ABSTRACT

BACKGROUND: Beta-1-adrenergic receptor antibodies (ß1-AAbs) function as arrhythmogenic molecules in autoimmune-related atrial fibrillation (AF). This study examined the potential impact of pioglitazone, an agonist for peroxisome proliferator-activated receptor-γ (PPAR-γ), on atrial remodeling induced by ß1-AAbs. METHODS: An in vivo study was performed to confirm the protective effects of pioglitazone on ß1- AAbs-induced atrial remodeling. GW9662, a PPAR-γ antagonist, was employed to identify the potential therapeutic target of pioglitazone. The rats were administered subcutaneous injections of the second extracellular loop peptide for 8 weeks to establish active immunization models. Pioglitazone was then administered orally for 2 weeks. Epicardial electrophysiologic studies, multielectrode array measurements, and echocardiography were conducted to examine atrial remodeling. Glucose metabolism products and key metabolic molecules were measured to evaluate the atrial substrate metabolism. Mitochondrial morphologies and function indices were tested to depict the underlying links between atrial metabolism and mitochondrial homeostasis under the pioglitazone treatment. RESULTS: Pioglitazone significantly reversed ß1-AAbs-induced AF susceptibility, ameliorated atrial structural remodeling, decreased the global insulin resistance reflected in the plasma glucose and insulin levels, and increased the protein expressions of glycolipid uptake and transportation (GLUT1, CD36, and CPT1a). These trends were counterbalanced by the GW9662 intervention. Mechanistically, pioglitazone mitigated the atrial mitochondrial network damage and partly renovated the mitochondrial biogenesis, even the mitochondrial dynamics, which were reversed by inhibiting the PPAR-γ target. CONCLUSION: Pioglitazone effectively reduced the AF vulnerability and recovered the atrial myocardial metabolism and mitochondrial damage. The potential anti-remodeling effect of pioglitazone on the atrium was associated with the moderately increased expression of key membrane proteins related to glucose transporter and fatty acid uptake, which may promote the increased myocardial preference for utilization of FA as the key cardiac oxidative fuel and ameliorate the atrial metabolic inflexibility.

8.
J Org Chem ; 89(10): 7286-7294, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38696309

ABSTRACT

Here we report a carbene-catalyzed enantio- and diastereoselective [4+2] cycloaddition reaction of cyclobutenones with isatins for the quick and efficient synthesis of spirocyclic δ-lactones bearing a chiral chlorine. A broad range of substrates with various substitution patterns proceed smoothly in this reaction, with the spirooxindole δ-lactone products afforded in generally good to excellent yields and optical purities under mild reaction conditions.

9.
bioRxiv ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38798358

ABSTRACT

B cell activation is accompanied by dynamic metabolic reprogramming, supported by a multitude of nutrients that include glucose, amino acids and fatty acids. While several studies have indicated that fatty acid mitochondrial oxidation is critical for immune cell functions, contradictory findings have been reported. Carnitine palmitoyltransferase II (CPT2) is a critical enzyme for long-chain fatty acid oxidation in mitochondria. Here, we test the requirement of CPT2 for humoral immunity using a mouse model with a lymphocyte specific deletion of CPT2. Stable 13C isotope tracing reveals highly reduced fatty acid-derived citrate production in CPT2 deficient B cells. Yet, CPT2 deficiency has no significant impact on B cell development, B cell activation, germinal center formation, and antibody production upon either thymus-dependent or -independent antigen challenges. Together, our findings indicate that CPT2 mediated fatty acid oxidation is dispensable for humoral immunity, highlighting the metabolic flexibility of lymphocytes.

10.
J Glob Health ; 14: 04104, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818611

ABSTRACT

Background: The description of long-term trends in the cancer burden among children aged zero to nine years from 1990 to 2019 reveals significant changes in children's health. It helps in resource allocation and health policy planning. We analysed data on the incidence, mortality, and disability-adjusted life years (DALYs) by sex and age group in children aged zero to nine. Methods: Estimates of DALYs for children aged zero to nine years, appeared as part of the Global Burden of Diseases, Injuries, and Risk Factor Study 2019, by age, sex, and location for 1990-2019. We also provided estimations by the sociodemographic index (SDI) quintile, a systematic measure to indicate educational attainment, income per capita, and total fertility rate for those younger than 25 years. We used age-period-cohort models to investigate paediatric cancers prevalence, incidence, mortality, and DALYs rates and auto-regressive integrated moving average models to predict cancer in children of different age groups in males and females. Results: A total of 6 224 010 DALY numbers for cancer cases occurred globally in 2019 among children aged zero to nine years. Additionally, the incidence of paediatric cancers in 2019 in the middle SDI countries was the highest, including 60 662 cases, and the highest mortality and DALYs cases of paediatric cancers were in the low SDI countries (25 502 and 2 199 790). The joinpoint regression analysis revealed that the trend of total cancer burden in age-standardised mortality rates and age-standardised DALYs rates showed a significant decrease with an average annual percentage change of -2.10 and -2.03 from 1990 to 2019. Furthermore, the paediatric cancer spectrum was changing. Other malignant neoplasms and other leukaemia were the major components of cancer in all age groups of children. Conclusions: The disease burden in children aged zero to nine years decreased significantly globally from 1990 to 2019. However, the overall prediction of childhood cancer increased slightly from 2020 to 2040. Our findings may help guide investments and inform policies. This highlights the necessity to improve current treatment measures and establish effective prevention strategies to reduce the cancer burden among children aged zero to nine years.


Subject(s)
Disability-Adjusted Life Years , Global Burden of Disease , Global Health , Neoplasms , Humans , Neoplasms/epidemiology , Neoplasms/mortality , Female , Male , Child, Preschool , Infant , Child , Global Health/statistics & numerical data , Disability-Adjusted Life Years/trends , Infant, Newborn , Global Burden of Disease/trends , Incidence
11.
Phytochemistry ; 223: 114115, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710377

ABSTRACT

A total of twenty-two diterpenoid alkaloids, including ten unprecedented ones, namely refractines C-L, were isolated from the roots of Aconitum refractum (Finet et Gagnep.) Hand.-Mazz. Refractine C was the first example of a natural diterpenoid alkaloid wherein C-19 is linked to N position by an oxaziridine ring. Refractine L was a rare glycosidic diterpenoid alkaloid with fructofuranoside. Most of the isolated compounds obtained from a previous study were screened for their anti-inflammatory and myocardial protective activities. The autophagy-inducing effects of some of these compounds on RAW 264.7 cells were evaluated by assessing the expression of microtubule-associated protein 1 light chain 3 (LC3-II/LC3-I). Results revealed that some compounds exerted varying levels of inhibitory effects on the proliferative activity of RAW 264.7 cells.


Subject(s)
Aconitum , Alkaloids , Autophagy , Diterpenes , Aconitum/chemistry , Mice , Animals , Autophagy/drug effects , RAW 264.7 Cells , Alkaloids/pharmacology , Alkaloids/isolation & purification , Alkaloids/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Cell Proliferation/drug effects , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug , Plant Roots/chemistry
12.
Clin Oral Investig ; 28(6): 325, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762665

ABSTRACT

OBJECTIVE: With the increasing maturity of 3D printing technology, the application of digital guide template in the extraction of impacted teeth has become more sophisticated. However, for maxillary palatal deeply impacted teeth, there still exist significant clinical challenges. This experiment introduces a novel digital guide template and innovatively employs a flapless technique to explore a minimally invasive approach for the extraction of palatal deeply impacted teeth. METHODS: This experiment included 40 patients diagnosed with palatal completely impacted teeth, randomly divided into an experimental group and a control group. The experimental group used the new digital guide template for flapless extraction, while the control group employed the traditional freehand flap technique. RESULTS: The experimental group can significantly reduce the localization time of palatally impacted teeth (P < 0.001), with total surgery times of 18.15 ± 4.88 min and 22.00 ± 7.71 min for the experimental and control groups, respectively (P = 0.067). Although there were no significant statistical differences between the two groups in terms of intraoperative bleeding, adjacent tooth damage, infection, or damage to nearby important anatomical structures, the experimental group showed significant improvements in postoperative pain (P < 0.05), swelling (P < 0.001), and patient satisfaction (P < 0.001) compared to the control group. CONCLUSION: Compared to traditional freehand flap surgery, flapless extraction of palatally impacted teeth guided by digital templates significantly reduces the localization time of impacted teeth and demonstrates notable advantages in some postoperative complications. Future studies with larger sample sizes are needed to substantiate the feasibility of this technique.


Subject(s)
Feasibility Studies , Tooth Extraction , Tooth, Impacted , Adolescent , Adult , Female , Humans , Male , Maxilla/surgery , Patient Satisfaction , Printing, Three-Dimensional , Surgery, Computer-Assisted/methods , Tooth Extraction/methods , Tooth, Impacted/surgery , Treatment Outcome
13.
Nat Prod Res ; : 1-7, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771014

ABSTRACT

An undescribed dammarane triterpenoid saponin Cypaliuruside F was isolated from the leaves of Cyclocarya paliurus in our preliminary study. The MTT assay, flow cytometry, cell scratch, and DAPI staining were used to detect the antitumor effects of Cypaliuruside F on HepG2 cells. Subsequently, network pharmacology and molecular docking analysis were used to analyse the key targets of Cypaliuruside F against HCC. In addition, a Western blot was performed to determine the effects of Cypaliuruside F on the expression of key proteins in HepG2 cells. The experimental results indicated that the damarane triterpenoid saponin Cypaliuruside F from Cyclocarya paliurus inhibits the proliferation of HepG2 cells by inducing apoptosis and cell cycle arrest. These changes may promote the apoptosis of HepG2 cells by inhibiting the expression of mTOR, STAT3, and Bcl-2 while activating Bax.

14.
STAR Protoc ; 5(2): 103092, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796848

ABSTRACT

Mosaic analysis with double markers (MADM) mouse models closely mimic the clonal origin of human cancers by generating sporadic, GFP-labeled cancer-initiating cells. Traditional clonal analysis pipelines are labor intensive, hindering throughput and disrupting the 3D architecture. Here, we present a protocol that integrates tissue clearing and light-sheet imaging to analyze pre-malignant clones in whole-mount MADM-labeled tissues. We describe steps for generating mosaic-labeled cancer mouse models, tissue harvesting, fixation, and clearing. We then detail procedures for light-sheet imaging and clonal size analysis. For complete details on the use and execution of this protocol, please refer to Zeng et al.1,2.

15.
Sci Transl Med ; 16(743): eadk5395, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630847

ABSTRACT

Endoscopy is the primary modality for detecting asymptomatic esophageal squamous cell carcinoma (ESCC) and precancerous lesions. Improving detection rate remains challenging. We developed a system based on deep convolutional neural networks (CNNs) for detecting esophageal cancer and precancerous lesions [high-risk esophageal lesions (HrELs)] and validated its efficacy in improving HrEL detection rate in clinical practice (trial registration ChiCTR2100044126 at www.chictr.org.cn). Between April 2021 and March 2022, 3117 patients ≥50 years old were consecutively recruited from Taizhou Hospital, Zhejiang Province, and randomly assigned 1:1 to an experimental group (CNN-assisted endoscopy) or a control group (unassisted endoscopy) based on block randomization. The primary endpoint was the HrEL detection rate. In the intention-to-treat population, the HrEL detection rate [28 of 1556 (1.8%)] was significantly higher in the experimental group than in the control group [14 of 1561 (0.9%), P = 0.029], and the experimental group detection rate was twice that of the control group. Similar findings were observed between the experimental and control groups [28 of 1524 (1.9%) versus 13 of 1534 (0.9%), respectively; P = 0.021]. The system's sensitivity, specificity, and accuracy for detecting HrELs were 89.7, 98.5, and 98.2%, respectively. No adverse events occurred. The proposed system thus improved HrEL detection rate during endoscopy and was safe. Deep learning assistance may enhance early diagnosis and treatment of esophageal cancer and may become a useful tool for esophageal cancer screening.


Subject(s)
Deep Learning , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Precancerous Conditions , Humans , Middle Aged , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/epidemiology , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Prospective Studies , Precancerous Conditions/pathology
16.
Cureus ; 16(3): e57146, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38681314

ABSTRACT

Lactic acidosis is a rare but severe complication of B-cell lymphoma, often associated with rapid disease progression and poor prognosis. We present a case of a 60-year-old male admitted with fever, splenomegaly, hemophagocytic tendencies, and lactic acidosis. The patient underwent several dialysis sessions before bone marrow flow cytometry finally confirmed B-cell lymphoma. However, hyperlactatemia persisted and recurred. The case underscores the challenges in diagnosing lymphomas with atypical presentations and emphasizes the critical role of timely bone marrow analysis. Additionally, the paper discusses the association between B-cell lymphoma and lactic acidosis, highlighting the importance of early recognition and intervention.

17.
Front Microbiol ; 15: 1358612, 2024.
Article in English | MEDLINE | ID: mdl-38638894

ABSTRACT

Cystolepiota is a tiny lepiotaceous fungi. During our 3 years fieldwork, we found four new species of Cystolepiota from northeastern China. A phylogenetic study of a combined dataset of ITS+nrLSU+rpb2+tef1-α revealed that Cystolepiota changbaishanensis and Cystolepiota hetieri are sister clades; Cystolepiota hongshiensis belongs to Cystolepiota seminuda complex; Cystolepiota luteosquamulosa formed a clade not closely related with any other; Cystolepiota nivalis and Cystolepiota sp. (HMJAU68235) formed a sister clade. All new species are provided with descriptions, photos of the basidiomata, and colored illustrations of the microstructures. A key for the identification of Cystolepiota species from China is also presented.

18.
Plant Physiol Biochem ; 210: 108615, 2024 May.
Article in English | MEDLINE | ID: mdl-38631158

ABSTRACT

Magnesium is one of the essential nutrients for plant growth, and plays a pivotal role in plant development and metabolism. Soil magnesium deficiency is evident in citrus production, which ultimately leads to failure of normal plant growth and development, as well as decreased productivity. Citrus is mainly propagated by grafting, so it is necessary to fully understand the different regulatory mechanisms of rootstock and scion response to magnesium deficiency. Here, we characterized the differences in morphological alterations, physiological metabolism and differential gene expression between trifoliate orange rootstocks and lemon scions under normal and magnesium-deficient conditions, revealing the different responses of rootstocks and scions to magnesium deficiency. The transcriptomic data showed that differentially expressed genes were enriched in 14 and 4 metabolic pathways in leaves and roots, respectively, after magnesium deficiency treatment. And the magnesium transport-related genes MHX and MRS2 may respond to magnesium deficiency stress. In addition, magnesium deficiency may affect plant growth by affecting POD, SOD, and CAT enzyme activity, as well as altering the levels of hormones such as IAA, ABA, GA3, JA, and SA, and the expression of related responsive genes. In conclusion, our research suggests that the leaves of lemon grafted onto trifoliate orange were more significantly affected than the roots under magnesium-deficient conditions, further indicating that the metabolic imbalance of scion lemon leaves was more severe.


Subject(s)
Citrus , Gene Expression Regulation, Plant , Magnesium , Seedlings , Citrus/metabolism , Citrus/genetics , Seedlings/metabolism , Seedlings/genetics , Seedlings/growth & development , Magnesium/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Magnesium Deficiency/metabolism , Plant Leaves/metabolism , Stress, Physiological , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
19.
Biomed Pharmacother ; 174: 116579, 2024 May.
Article in English | MEDLINE | ID: mdl-38631145

ABSTRACT

BACKGROUND AND AIM: Diabetes-associated cognitive impairment (DCI) is a prevalent complication of diabetes. However, there is a lack of viable strategies for preventing and treating DCI. This study aims to explore the efficacy of baicalin (Bai) in attenuating DCI and elucidating the underlying mechanisms. EXPERIMENTAL PROCEDURE: GK rats fed a high-fat and high-glucose diet were utilized to investigate the therapeutic potential of Bai. Cognitive function was assessed using the Morris water maze and novel object recognition tests. To gain insight into the molecular mechanisms underlying Bai's neuro-protective effects, co-cultured BV2/HT22 cells were established under high-glucose (HG) stimulation. The modes of action of Bai were subsequently confirmed in vivo using the DCI model in db/db mice. KEY RESULTS: Bai restored cognitive and spatial memory and attenuated neuron loss, along with reducing expressions of Aß and phosphorylated Tau protein in diabetic GK rats. At the cellular level, Bai exhibited potent antioxidant and anti-inflammatory effects against HG stimulation. These effects were associated with the upregulation of Nrf2 and supressed Keap1 levels. Consistent with these in vitro findings, similar mechanisms were observed in db/db mice. The significant neuroprotective effects of Bai were abolished when co-administered with ATRA, a Nrf2 blocker, in db/db mice, confirming that KEAP1-Nrf2 signaling pathway was responsible for the observed effect. CONCLUSIONS AND IMPLICATIONS: Bai demonstrates a great therapeutic potential for attenuating DCI. The antioxidant defense and anti-inflammatory actions of Bai were mediated through the KEAP1-Nrf2 axis. These findings advance our understanding of potential treatment approaches for DCI, a common complication associated with diabetes.


Subject(s)
Cognitive Dysfunction , Flavonoids , NF-E2-Related Factor 2 , Neuroprotective Agents , Signal Transduction , Up-Regulation , Animals , Male , Mice , Rats , Antioxidants/pharmacology , Cell Line , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Flavonoids/pharmacology , Flavonoids/therapeutic use , Kelch-Like ECH-Associated Protein 1/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , NF-E2-Related Factor 2/metabolism , Rats, Wistar , Signal Transduction/drug effects , Up-Regulation/drug effects
20.
Res Sq ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38585731

ABSTRACT

During the humoral immune response, B cells undergo rapid metabolic reprogramming with a high demand for nutrients, which are vital to sustain the formation of the germinal centers (GCs). Rag-GTPases sense amino acid availability to modulate the mechanistic target of rapamycin complex 1 (mTORC1) pathway and suppress transcription factor EB (TFEB) and transcription factor enhancer 3 (TFE3), members of the microphthalmia (MiT/TFE) family of HLH-leucine zipper transcription factors. However, how Rag-GTPases coordinate amino acid sensing, mTORC1 activation, and TFEB/TFE3 activity in humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and generate plasmablasts in both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish Rag-GTPase-TFEB/TFE3 axis as an mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...