Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 232: 118173, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32113180

ABSTRACT

Alternating trilinear decomposition (ATLD) method enables the qualitative and quantitative analysis of excitation-emission matrix fluorescence (EEMF) data acquired from complex samples. However, the impact of diverse background interferences from different sample sources on the performances of ATLD method has never been lucubrated. In this work, simulated and real EEMF data sets from different sample sources with diverse background interferences were collected and subjected to ATLD analysis. The performances of ATLD modeling individual and global EEMF data sets were comprehensively compared in terms of the resolved spectral profiles and quantitative results. It was found that ATLD method can use the same set of calibration samples to resolve and quantify multiple components of interest in multiple complex systems with diverse background interferences, regardless of individual or global modeling. The results revealed that the qualitative and quantitative results provided by ATLD method were affected neither by diversity of background interferences nor by data merging as long as the acquired EEMF data sets conform to the trilinear component model. This property of ATLD method can enrich the "second-order advantage", i.e. the term "unknown interferences" in the concept of "second-order advantage" refers to not only constant background interferences but also diverse background interferences, which will be certain to further expand the practicality of ATLD method in complex sample analysis, especially in the field of fluorescence spectroscopy.

2.
Yi Chuan ; 38(3): 227-42, 2016 03.
Article in Chinese | MEDLINE | ID: mdl-27001477

ABSTRACT

Plant genome can be modified via current biotechnology with high specificity and excellent efficiency. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system are the key engineered nucleases used in the genome editing. Genome editing techniques enable gene targeted mutagenesis, gene knock-out, gene insertion or replacement at the target sites during the endogenous DNA repair process, including non-homologous end joining (NHEJ) and homologous recombination (HR), triggered by the induction of DNA double-strand break (DSB). Genome editing has been successfully applied in the genome modification of diverse plant species, such as Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. In this review, we summarize the application of genome editing in identification of plant gene function and crop breeding. Moreover, we also discuss the improving points of genome editing in crop precision genetic improvement for further study.


Subject(s)
Genome, Plant , Plant Proteins/genetics , Plants/genetics , Breeding , Genetic Engineering , Plant Proteins/metabolism , Plants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...