Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 90(1): 48-60, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28008679

ABSTRACT

The inward-rectifying K+ channel AKT1 constitutes an important pathway for K+ acquisition in plant roots. In glycophytes, excessive accumulation of Na+ is accompanied by K+ deficiency under salt stress. However, in the succulent xerophyte Zygophyllum xanthoxylum, which exhibits excellent adaptability to adverse environments, K+ concentration remains at a relatively constant level despite increased levels of Na+ under salinity and drought conditions. In this study, the contribution of ZxAKT1 to maintaining K+ and Na+ homeostasis in Z. xanthoxylum was investigated. Expression of ZxAKT1 rescued the K+ -uptake-defective phenotype of yeast strain CY162, suppressed the salt-sensitive phenotype of yeast strain G19, and complemented the low-K+ -sensitive phenotype of Arabidopsis akt1 mutant, indicating that ZxAKT1 functions as an inward-rectifying K+ channel. ZxAKT1 was predominantly expressed in roots, and was induced under high concentrations of either KCl or NaCl. By using RNA interference technique, we found that ZxAKT1-silenced plants exhibited stunted growth compared to wild-type Z. xanthoxylum. Further experiments showed that ZxAKT1-silenced plants exhibited a significant decline in net uptake of K+ and Na+ , resulting in decreased concentrations of K+ and Na+ , as compared to wild-type Z. xanthoxylum grown under 50 mm NaCl. Compared with wild-type, the expression levels of genes encoding several transporters/channels related to K+ /Na+ homeostasis, including ZxSKOR, ZxNHX, ZxSOS1 and ZxHKT1;1, were reduced in various tissues of a ZxAKT1-silenced line. These findings suggest that ZxAKT1 not only plays a crucial role in K+ uptake but also functions in modulating Na+ uptake and transport systems in Z. xanthoxylum, thereby affecting its normal growth.


Subject(s)
Plant Proteins/metabolism , Potassium/metabolism , Sodium/metabolism , Zygophyllum/metabolism , Gene Expression Regulation, Plant/drug effects , Homeostasis/drug effects , Potassium Chloride/pharmacology , Sodium Chloride/pharmacology , Zygophyllum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...