Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Magn Reson Med ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888135

ABSTRACT

PURPOSE: To develop and demonstrate a fast 3D fMRI acquisition technique with high spatial resolution over a reduced FOV, named k-t 3D reduced FOV imaging (3D-rFOVI). METHODS: Based on 3D gradient-echo EPI, k-t 3D-rFOVI used a 2D RF pulse to reduce the FOV in the in-plane phase-encoding direction, boosting spatial resolution without increasing echo train length. For image acceleration, full sampling was applied in the central k-space region along the through-slab direction (kz) for all time frames, while randomized undersampling was used in outer kz regions at different time frames. Images were acquired at 3T and reconstructed using a method based on partial separability. fMRI detection sensitivity of k-t 3D-rFOVI was quantitively analyzed with simulation data. Human visual fMRI experiments were performed to evaluate k-t 3D-rFOVI and compare it with a commercial multiband EPI sequence. RESULTS: The simulation data showed that k-t 3D-rFOVI can detect 100% of fMRI activations with an acceleration factor (R) of 2 and ˜80% with R = 6. In the human fMRI data acquired with 1.5-mm spatial resolution and 800-ms volume TR (TRvol), k-t 3D-rFOVI with R = 4 detected 46% more activated voxels in the visual cortex than the multiband EPI. Additional fMRI experiments showed that k-t 3D-rFOVI can achieve TRvol of 480 ms with R = 6, while reliably detecting visual activation. CONCLUSIONS: k-t 3D-rFOVI can simultaneously achieve a high spatial resolution (1.5-mm isotropically) and short TRvol (480-ms) at 3T. It offers a robust acquisition technique for fast fMRI studies over a focused brain volume.

4.
Magn Reson Med ; 91(2): 558-569, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37749847

ABSTRACT

PURPOSE: Quantitative mapping of brain perfusion, diffusion, T2 *, and T1 has important applications in cerebrovascular diseases. At present, these sequences are performed separately. This study aims to develop a novel MRI technique to simultaneously estimate these parameters. METHODS: This sequence to measure perfusion, diffusion, T2 *, and T1 mapping with magnetic resonance fingerprinting (MRF) was based on a previously reported MRF-arterial spin labeling (ASL) sequence, but the acquisition module was modified to include different TEs and presence/absence of bipolar diffusion-weighting gradients. We compared parameters derived from the proposed method to those derived from reference methods (i.e., separate sequences of MRF-ASL, conventional spin-echo DWI, and T2 * mapping). Test-retest repeatability and initial clinical application in two patients with stroke were evaluated. RESULTS: The scan time of our proposed method was 24% shorter than the sum of the reference methods. Parametric maps obtained from the proposed method revealed excellent image quality. Their quantitative values were strongly correlated with those from reference methods and were generally in agreement with values reported in the literature. Repeatability assessment revealed that ADC, T2 *, T1 , and B1 + estimation was highly reliable, with voxelwise coefficient of variation (CoV) <5%. The CoV for arterial transit time and cerebral blood flow was 16% ± 3% and 25% ± 9%, respectively. The results from the two patients with stroke demonstrated that parametric maps derived from the proposed method can detect both ischemic and hemorrhagic stroke. CONCLUSION: The proposed method is a promising technique for multi-parametric mapping and has potential use in patients with stroke.


Subject(s)
Magnetic Resonance Imaging , Stroke , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/blood supply , Magnetic Resonance Spectroscopy , Perfusion , Stroke/diagnostic imaging , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
5.
Heliyon ; 9(10): e20348, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37810872

ABSTRACT

Objectives: To study the value of standardized volume and intravoxel incoherent motion (IVIM) parameters of the spleen based on tumor burden for predicting treatment response in newly diagnosed acute leukemia (AL). Methods: Patients with newly diagnosed AL were recruited and underwent abdominal IVIM diffusion-weighted imaging within one week before the first induction chemotherapy. Quantitative parameters of magnetic resonance imaging (MRI) included the standardized volume (representing volumetric tumor burden) and IVIM parameters (standard apparent diffusion coefficient [sADC]; pure diffusion coefficient [D]; pseudo-diffusion coefficient [D∗]; and pseudo-perfusion fraction [f], representing functional tumor burden) of the spleen. Clinical biomarkers of tumor burden were collected. Patients were divided into complete remission (CR) and non-CR groups according to the treatment response after the first standardized induction chemotherapy, and the MRI and clinical parameters were compared between the two groups. The correlations of MRI parameters with clinical biomarkers were analyzed. Multivariate logistic regression was performed to determine the independent predictors for treatment response. Receiver operating characteristic curves were used to analyze the predicted performance. Results: 76 AL patients (CR: n = 43; non-CR: n = 33) were evaluated. Standardized spleen volume, sADC, D, f, white blood cell counts, and lactate dehydrogenase were significantly different between CR and non-CR groups (all p < 0.05). Standardized spleen volume, sADC, and D were correlated with white blood cell and lactate dehydrogenase, and f was correlated with lactate dehydrogenase (all p < 0.05). Standardized spleen volume (hazard ratio = 4.055, p = 0.042), D (hazard ratio = 0.991, p = 0.027), and f (hazard ratio = 1.142, p = 0.008) were independent predictors for treatment response, and the combination of standardized spleen volume, D, and f showed more favorable discrimination (area under the curve = 0.856) than individual predictors. Conclusion: Standardized volume, D, and f of the spleen could be used to predict treatment response in newly diagnosed AL, and the combination of morphological and functional parameters would further improve the predicted performance. IVIM parameters of the spleen may be viable indicators for evaluating functional tumor burden in AL.

6.
Magn Reson Med ; 90(6): 2375-2387, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37667533

ABSTRACT

PURPOSE: EPI with blip-up/down acquisition (BUDA) can provide high-quality images with minimal distortions by using two readout trains with opposing phase-encoding gradients. Because of the need for two separate acquisitions, BUDA doubles the scan time and degrades the temporal resolution when compared to single-shot EPI, presenting a major challenge for many applications, particularly fMRI. This study aims at overcoming this challenge by developing an echo-shifted EPI BUDA (esEPI-BUDA) technique to acquire both blip-up and blip-down datasets in a single shot. METHODS: A 3D esEPI-BUDA pulse sequence was designed by using an echo-shifting strategy to produce two EPI readout trains. These readout trains produced a pair of k-space datasets whose k-space trajectories were interleaved with opposite phase-encoding gradient directions. The two k-space datasets were separately reconstructed using a 3D SENSE algorithm, from which time-resolved B0 -field maps were derived using TOPUP in FSL and then input into a forward model of joint parallel imaging reconstruction to correct for geometric distortion. In addition, Hankel structured low-rank constraint was incorporated into the reconstruction framework to improve image quality by mitigating the phase errors between the two interleaved k-space datasets. RESULTS: The 3D esEPI-BUDA technique was demonstrated in a phantom and an fMRI study on healthy human subjects. Geometric distortions were effectively corrected in both phantom and human brain images. In the fMRI study, the visual activation volumes and their BOLD responses were comparable to those from conventional 3D echo-planar images. CONCLUSION: The improved imaging efficiency and dynamic distortion correction capability afforded by 3D esEPI-BUDA are expected to benefit many EPI applications.


Subject(s)
Algorithms , Arthroplasty, Replacement , Humans , Brain/diagnostic imaging , Healthy Volunteers , Phantoms, Imaging
7.
Heliyon ; 9(6): e16702, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484276

ABSTRACT

This study proposed to investigate the optimal selection of b-values in diffusion-weighted imaging for distinguishing malignant from benign mediastinal lymph nodes. Diffusion-weighted imaging with six b-values was performed on 35 patients at 1.5 T. Image quality score, signal-to-noise ratio, and relative contrast ratio of lymph node to chest muscle were compared between the diffusion-weighted images with a b-value up to 800 and 1000 s/mm2. Using a lower and an upper b-value in the range of 0-1000 s/mm2, eight apparent diffusion coefficient maps were obtained from a mono-exponential model. Receiver operating characteristic analysis was employed to evaluate the performance of the apparent diffusion coefficients for distinguishing malignant from benign mediastinal lymph nodes by using the area under the curve as a criterion. The mean image quality score and the relative contrast ratio showed no difference between b-values of 800 and 1000 s/mm2. In the receiver operating characteristic analysis, the areas under the curve of apparent diffusion coefficient with b-value pairs of (0, 800), (0, 1000), and (50, 800) s/mm2 were significantly higher than those from the other b-value pairs. No significant difference was observed among the three b-value pairs. Apparent diffusion coefficient obtained from b-value pairs of (0, 800), (0, 1000), and (50, 800) s/mm2 showed superior diagnostic performance compared to the other b-value combinations. Based on several practical considerations, the b-value pair of (50, 800) s/mm2 is recommended for differential diagnosis of mediastinal lymph nodes.

8.
Bioengineering (Basel) ; 10(7)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37508891

ABSTRACT

PURPOSE: To develop a novel convolutional recurrent neural network (CRNN-DWI) and apply it to reconstruct a highly undersampled (up to six-fold) multi-b-value, multi-direction diffusion-weighted imaging (DWI) dataset. METHODS: A deep neural network that combines a convolutional neural network (CNN) and recurrent neural network (RNN) was first developed by using a set of diffusion images as input. The network was then used to reconstruct a DWI dataset consisting of 14 b-values, each with three diffusion directions. For comparison, the dataset was also reconstructed with zero-padding and 3D-CNN. The experiments were performed with undersampling rates (R) of 4 and 6. Standard image quality metrics (SSIM and PSNR) were employed to provide quantitative assessments of the reconstructed image quality. Additionally, an advanced non-Gaussian diffusion model was employed to fit the reconstructed images from the different approaches, thereby generating a set of diffusion parameter maps. These diffusion parameter maps from the different approaches were then compared using SSIM as a metric. RESULTS: Both the reconstructed diffusion images and diffusion parameter maps from CRNN-DWI were better than those from zero-padding or 3D-CNN. Specifically, the average SSIM and PSNR of CRNN-DWI were 0.750 ± 0.016 and 28.32 ± 0.69 (R = 4), and 0.675 ± 0.023 and 24.16 ± 0.77 (R = 6), respectively, both of which were substantially higher than those of zero-padding or 3D-CNN reconstructions. The diffusion parameter maps from CRNN-DWI also yielded higher SSIM values for R = 4 (>0.8) and for R = 6 (>0.7) than the other two approaches (for R = 4, <0.7, and for R = 6, <0.65). CONCLUSIONS: CRNN-DWI is a viable approach for reconstructing highly undersampled DWI data, providing opportunities to reduce the data acquisition burden.

10.
J Gerontol Nurs ; 49(7): 31-39, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37379049

ABSTRACT

Older adults with chronic kidney disease (CKD) are at risk for cognitive impairment and sleep disturbances. The purpose of the current study was to investigate the relationship between sleep and brain structure/function in older adults with CKD and self-identified cognitive impairment. The sample (N = 37) had a mean age of 68 years (SD = 4.9 years), estimated glomerular filtration rate of 43.7 mL/min/1.73m2 (SD = 10.98), median sleep time of 7.4 hours, and was 70% female. Sleeping <7.4 hours, compared to ≥7.4 hours, was associated with better attention/information processing (ß = 11.46, 95% confidence interval [CI] [3.85, 19.06]) and better learning/memory (ß = 2.06, 95% CI [0.37, 3.75]). Better sleep efficiency was associated with better global cerebral blood flow (ß = 3.30, 95% CI [0.65, 5.95]). Longer awake length after sleep onset was associated with worse fractional anisotropy of the cingulum (ß = -0.01, 95% CI [-0.02, -0.003]). Sleep duration and continuity may be related to brain function in older adults with CKD and self-identified cognitive impairment. [Journal of Gerontological Nursing, 49(7), 31-39.].


Subject(s)
Cognitive Dysfunction , Renal Insufficiency, Chronic , Humans , Female , Aged , Male , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/psychology , Cognitive Dysfunction/complications , Sleep/physiology , Cognition/physiology , Brain
11.
Pain ; 164(9): 1912-1926, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37326643

ABSTRACT

ABSTRACT: Chronic pain affects more than 50 million Americans. Treatments remain inadequate, in large part, because the pathophysiological mechanisms underlying the development of chronic pain remain poorly understood. Pain biomarkers could potentially identify and measure biological pathways and phenotypical expressions that are altered by pain, provide insight into biological treatment targets, and help identify at-risk patients who might benefit from early intervention. Biomarkers are used to diagnose, track, and treat other diseases, but no validated clinical biomarkers exist yet for chronic pain. To address this problem, the National Institutes of Health Common Fund launched the Acute to Chronic Pain Signatures (A2CPS) program to evaluate candidate biomarkers, develop them into biosignatures, and discover novel biomarkers for chronification of pain after surgery. This article discusses candidate biomarkers identified by A2CPS for evaluation, including genomic, proteomic, metabolomic, lipidomic, neuroimaging, psychophysical, psychological, and behavioral measures. Acute to Chronic Pain Signatures will provide the most comprehensive investigation of biomarkers for the transition to chronic postsurgical pain undertaken to date. Data and analytic resources generatedby A2CPS will be shared with the scientific community in hopes that other investigators will extract valuable insights beyond A2CPS's initial findings. This article will review the identified biomarkers and rationale for including them, the current state of the science on biomarkers of the transition from acute to chronic pain, gaps in the literature, and how A2CPS will address these gaps.


Subject(s)
Acute Pain , Chronic Pain , Humans , Proteomics , Pain, Postoperative/etiology , Acute Pain/complications , Biomarkers
12.
Magn Reson Med ; 90(3): 910-921, 2023 09.
Article in English | MEDLINE | ID: mdl-37103885

ABSTRACT

PURPOSE: To develop a time-efficient pulse sequence that acquires multiple diffusion-weighted images with distinct diffusion times in a single shot by using multiple stimulated echoes (mSTE) with variable flip angles (VFA). METHODS: The proposed diffusion-weighted mSTE with VFA (DW-mSTE-VFA) sequence begins with two 90° RF pulses that straddle a diffusion gradient lobe (GD ) to excite and restore one half of the magnetization into the longitudinal axis. The restored longitudinal magnetization was successively re-excited by a series of RF pulses with VFA, each followed by another GD , to generate a set of stimulated echoes. Each of the multiple stimulated echoes was acquired with an EPI echo train. As such, the train of multiple stimulated echoes produced a set of diffusion-weighted images with varying diffusion times in a single shot. This technique was experimentally demonstrated on a diffusion phantom, a fruit, and healthy human brain and prostate at 3 T. RESULTS: In the phantom experiment, the mean ADC measured at different diffusion times using DW-mSTE-VFA were highly consistent (r = 0.999) with those from a commercial spin-echo diffusion-weighted EPI sequence. In the fruit and brain experiments, DW-mSTE-VFA exhibited similar diffusion-time dependence to a standard diffusion-weighted stimulated echo sequence. The ADC showed significant time dependence in the human brain (p = 0.003 in both white matter and gray matter) and prostate tissues (p = 0.003 in both peripheral zone and central gland). CONCLUSION: DW-mSTE-VFA offers a time-efficient tool for investigating the diffusion-time dependency in diffusion MRI studies.


Subject(s)
Diffusion Magnetic Resonance Imaging , Prostate , Male , Humans , Diffusion Magnetic Resonance Imaging/methods , Prostate/diagnostic imaging , Brain/diagnostic imaging , Head , Gray Matter , Echo-Planar Imaging
13.
Magn Reson Med ; 90(1): 133-149, 2023 07.
Article in English | MEDLINE | ID: mdl-36883748

ABSTRACT

PURPOSE: To compare the performances of uniform-density spiral (UDS), variable-density spiral (VDS), and dual-density spiral (DDS) samplings in multi-shot diffusion imaging, and determine a sampling strategy that balances reliability of shot navigator and overall DWI image quality. THEORY AND METHODS: UDS, VDS, and DDS trajectories were implemented to achieve four-shot diffusion-weighted spiral imaging. First, the static B0 off-resonance effects in UDS, VDS, and DDS acquisitions were analyzed based on a signal model. Then, in vivo experiments were performed to verify the theoretical analyses, and fractional anisotropy (FA) fitting residuals were used to quantitatively assess the quality of spiral diffusion data for tensor estimation. Finally, the SNR performances and g-factor behavior of the three spiral samplings were evaluated using a Monte Carlo-based pseudo multiple replica method. RESULTS: Among the three spiral trajectories with the same readout duration, UDS sampling exhibited the least off-resonance artifacts. This was most evident when the static B0 off-resonance effect was severe. The UDS diffusion images had higher anatomical fidelity and lower FA fitting residuals than the other two counterparts. Furthermore, the four-shot UDS acquisition achieved the best SNR performance in diffusion imaging with 12.11% and 40.85% improvements over the VDS and DDS acquisitions with the same readout duration, respectively. CONCLUSION: UDS sampling is an efficient spiral acquisition scheme for high-resolution diffusion imaging with reliable navigator information. It provides superior off-resonance performance and SNR efficiency over the VDS and DDS samplings for the tested scenarios.


Subject(s)
Algorithms , Diffusion Magnetic Resonance Imaging , Reproducibility of Results , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Image Interpretation, Computer-Assisted/methods , Artifacts , Image Processing, Computer-Assisted/methods , Echo-Planar Imaging
14.
Magn Reson Med ; 90(1): 250-258, 2023 07.
Article in English | MEDLINE | ID: mdl-36932652

ABSTRACT

PURPOSE: To develop a DWI sequence with multiple readout echo-trains in a single shot (multi-readout DWI) over a reduced FOV, and to demonstrate its ability to achieve high data acquisition efficiency in the study of coupling between diffusion and relaxation in the human prostate. METHODS: The proposed multi-readout DWI sequence plays out multiple EPI readout echo-trains after a Stejskal-Tanner diffusion preparation module. Each EPI readout echo-train corresponded to a distinct effective TE. To maintain a high spatial resolution with a relatively short echo-train for each readout, a 2D RF pulse was used to limit the FOV. Experiments were performed on the prostate of six healthy subjects to acquire a set of images with three b values (0, 500, and 1000 s/mm2 ) and three TEs (63.0, 78.8, and 94.6 ms), producing three ADC maps at different TEs and three T 2 * $$ {T}_2^{\ast } $$ maps at different b values. RESULTS: Multi-readout DWI enabled a threefold acceleration without compromising the spatial resolution when compared with a conventional single-readout sequence. Images with three b values and three TEs were obtained in 3 min 40 s with an adequate SNR (≥ 26.9). The ADC values (1.45 ± 0.13, 1.52 ± 0.14, and 1.58 ± 0.15  µm 2 / ms $$ {\upmu \mathrm{m}}^2/\mathrm{ms} $$ ; P < 0.01) exhibited an increasing trend as TEs increased (63.0 ms, 78.8 ms, and 94.6 ms), whereas T 2 * $$ {T}_2^{\ast } $$ values (74.78 ± 13.21, 63.21 ± 7.84, and 56.61 ± 5.05 ms; P < 0.01) decreases as the b values increased (0, 500, and 1000 s/mm2 ). CONCLUSION: The multi-readout DWI sequence over a reduced FOV provides a time-efficient technique to study the coupling between diffusion and relaxation times.


Subject(s)
Diffusion Magnetic Resonance Imaging , Prostate , Male , Humans , Prostate/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods
15.
Phys Med Biol ; 68(8)2023 04 03.
Article in English | MEDLINE | ID: mdl-36808921

ABSTRACT

Objective. To investigate quantitative imaging markers based on parameters from two diffusion-weighted imaging (DWI) models, continuous-time random-walk (CTRW) and intravoxel incoherent motion (IVIM) models, for characterizing malignant and benign breast lesions by using a machine learning algorithm.Approach. With IRB approval, 40 women with histologically confirmed breast lesions (16 benign, 24 malignant) underwent DWI with 11b-values (50 to 3000 s/mm2) at 3T. Three CTRW parameters,Dm,α, andßand three IVIM parametersDdiff,Dperf, andfwere estimated from the lesions. A histogram was generated and histogram features of skewness, variance, mean, median, interquartile range; and the value of the 10%, 25% and 75% quantiles were extracted for each parameter from the regions-of-interest. Iterative feature selection was performed using the Boruta algorithm that uses the Benjamin Hochberg False Discover Rate to first determine significant features and then to apply the Bonferroni correction to further control for false positives across multiple comparisons during the iterative procedure. Predictive performance of the significant features was evaluated using Support Vector Machine, Random Forest, Naïve Bayes, Gradient Boosted Classifier (GB), Decision Trees, AdaBoost and Gaussian Process machine learning classifiers.Main Results. The 75% quantile, and median ofDm; 75% quantile off;mean, median, and skewness ofß;kurtosis ofDperf; and 75% quantile ofDdiffwere the most significant features. The GB differentiated malignant and benign lesions with an accuracy of 0.833, an area-under-the-curve of 0.942, and an F1 score of 0.87 providing the best statistical performance (p-value < 0.05) compared to the other classifiers.Significance. Our study has demonstrated that GB with a set of histogram features from the CTRW and IVIM model parameters can effectively differentiate malignant and benign breast lesions.


Subject(s)
Breast Neoplasms , Breast , Female , Humans , Bayes Theorem , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Diffusion Magnetic Resonance Imaging/methods , Machine Learning , Motion , Reproducibility of Results
16.
Phys Med Biol ; 68(4)2023 02 03.
Article in English | MEDLINE | ID: mdl-36634366

ABSTRACT

Objective.This study aimed at developing a simultaneous multi-segment (SMSeg) imaging technique using a two-dimensional (2D) RF pulse in conjunction with echo planar imaging (EPI) to image multiple focal regions.Approach.The SMSeg technique leveraged periodic replicates of the excitation profile of a 2D RF pulse to simultaneously excite multiple focal regions at different locations. These locations were controlled by rotating and scaling transmit k-space trajectories. The resulting multiple isolated focal regions were projected into a composite 'slice' for display. GRAPPA-based parallel imaging was incorporated into SMSeg by taking advantage of coil sensitivity variations in both the phase-encoded and slice-selection directions. The SMSeg technique was implemented at 3 T in a single-shot gradient-echo EPI sequence and demonstrated in a phantom and human brains for both anatomic imaging and functional imaging.Main results.In both the phantom and the human brain, SMSeg images from three focal regions were simultaneously acquired. SMSeg imaging enabled up to a six-fold acceleration in parallel imaging without causing appreciable residual aliasing artifacts when compared with a conventional gradient-echo EPI sequence with the same acceleration factor. In the functional imaging experiment, BOLD activations associated with a visuomotor task were simultaneously detected in two non-coplanar segments (each with a size of 240 × 30 mm2), corresponding to visual and motor cortices, respectively.Significance.Our study has demonstrated that SMSeg imaging can be a viable method for studying multiple focal regions simultaneously.


Subject(s)
Echo-Planar Imaging , Image Enhancement , Humans , Echo-Planar Imaging/methods , Image Enhancement/methods , Brain/diagnostic imaging , Brain Mapping/methods , Phantoms, Imaging , Artifacts , Image Processing, Computer-Assisted/methods
17.
Quant Imaging Med Surg ; 12(11): 5171-5183, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36330178

ABSTRACT

Background: Accurate grading of gliomas is a challenge in imaging diagnosis. This study aimed to evaluate the performance of a machine learning (ML) approach based on multiparametric diffusion-weighted imaging (DWI) in differentiating low- and high-grade adult gliomas. Methods: A model was developed from an initial cohort containing 74 patients with pathology-confirmed gliomas, who underwent 3 tesla (3T) diffusion magnetic resonance imaging (MRI) with 21 b values. In all, 112 histogram features were extracted from 16 parameters derived from seven diffusion models [monoexponential, intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), fractional order calculus (FROC), continuous-time random walk (CTRW), stretched-exponential, and statistical]. Feature selection and model training were performed using five randomly permuted five-fold cross-validations. An internal test set (15 cases of the primary dataset) and an external cohort (n=55) imaged on a different scanner were used to validate the model. The diagnostic performance of the model was compared with that of a single DWI model and DWI radiomics using accuracy, sensitivity, specificity, and the area under the curve (AUC). Results: Seven significant multiparametric DWI features (two from the stretched-exponential and FROC models, and three from the CTRW model) were selected to construct the model. The multiparametric DWI model achieved the highest AUC (0.84, versus 0.71 for the single DWI model, P<0.05), an accuracy of 0.80 in the internal test, and both AUC and accuracy of 0.76 in the external test. Conclusions: Our multiparametric DWI model differentiated low- (LGG) from high-grade glioma (HGG) with better generalization performance than the established single DWI model. This result suggests that the application of an ML approach with multiple DWI models is feasible for the preoperative grading of gliomas.

18.
Sleep Vigil ; 6(1): 179-184, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35813983

ABSTRACT

Purpose: Persistent sustained attention deficit (SAD) after continuous positive airway pressure (CPAP) treatment is a source of quality of life and occupational impairment in obstructive sleep apnea (OSA). However, persistent SAD is difficult to predict in patients initiated on CPAP treatment. We performed secondary analyses of brain magnetic resonance (MR) images in treated OSA participants, using deep learning, to predict SAD. Methods: 26 middle-aged men with CPAP use of more than 6 hours daily and MR imaging were included. SAD was defined by psychomotor vigilance task lapses of more than 2. 17 participants had SAD and 9 were without SAD. A Convolutional Neural Network (CNN) model was used for classifying the MR images into +SAD and -SAD categories. Results: The CNN model achieved an accuracy of 97.02±0.80% in classifying MR images into +SAD and -SAD categories. Assuming a threshold of 90% probability for the MR image being correctly classified, the model provided a participant-level accuracy of 99.11±0.55% and a stable image level accuracy of 97.45±0.63%. Conclusion: Deep learning methods, such as the proposed CNN model, can accurately predict persistent SAD based on MR images. Further replication of these findings will allow early initiation of adjunctive pharmacologic treatment in high-risk patients, along with CPAP, to improve quality of life and occupational fitness. Future augmentation of this approach with explainable artificial intelligence methods may elucidate the neuroanatomical areas underlying persistent SAD to provide mechanistic insights and novel therapeutic targets.

19.
Magn Reson Med ; 88(4): 1690-1701, 2022 10.
Article in English | MEDLINE | ID: mdl-35666824

ABSTRACT

PURPOSE: The gradient-echo-train-based Sub-millisecond Periodic Event Encoded Dynamic Imaging (get-SPEEDI) technique provides ultrahigh temporal resolutions (∼0.6 ms) for detecting rapid physiological activities, but its practical adoption can be hampered by long scan times. This study aimed at developing a more efficient variant of get-SPEEDI for reducing the scan time without degrading temporal resolution or image quality. METHODS: The proposed pulse sequence, named k-t get-SPEEDI, accelerated get-SPEEDI acquisition by undersampling the k-space phase-encoding lines semi-randomly. At each time frame, k-space was fully sampled in the central region whereas randomly undersampled in the outer regions. A time-series of images was reconstructed using an algorithm based on the joint partial separability and sparsity constraints. To demonstrate the performance of k-t get-SPEEDI, images of human aortic valve opening and closing were acquired with 0.6-ms temporal resolution and compared with those from conventional get-SPEEDI. RESULTS: k-t get-SPEEDI achieved a 2-fold scan time reduction over the conventional get-SPEEDI (from ∼6 to ∼3 min), while achieving comparable SNRs and contrast-to-noise ratio (CNRs) for visualizing the dynamic process of aortic valve: SNR/CNR ≈$$ \approx $$ 70/38 vs. 73/39 in the k-t and conventional get-SPEEDI scans, respectively. The time courses of aortic valve area also matched well between these two sequences with a correlation coefficient of 0.86. CONCLUSIONS: The k-t get-SPEEDI pulse sequence was able to half the scan time without compromising the image quality and ultrahigh temporal resolution. Additional scan time reduction may also be possible, facilitating in vivo adoptions of SPEEDI techniques.


Subject(s)
Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Algorithms , Humans , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods
20.
Front Med (Lausanne) ; 9: 849214, 2022.
Article in English | MEDLINE | ID: mdl-35547202

ABSTRACT

Chronic pain has become a global health problem contributing to years lived with disability and reduced quality of life. Advances in the clinical management of chronic pain have been limited due to incomplete understanding of the multiple risk factors and molecular mechanisms that contribute to the development of chronic pain. The Acute to Chronic Pain Signatures (A2CPS) Program aims to characterize the predictive nature of biomarkers (brain imaging, high-throughput molecular screening techniques, or "omics," quantitative sensory testing, patient-reported outcome assessments and functional assessments) to identify individuals who will develop chronic pain following surgical intervention. The A2CPS is a multisite observational study investigating biomarkers and collective biosignatures (a combination of several individual biomarkers) that predict susceptibility or resilience to the development of chronic pain following knee arthroplasty and thoracic surgery. This manuscript provides an overview of data collection methods and procedures designed to standardize data collection across multiple clinical sites and institutions. Pain-related biomarkers are evaluated before surgery and up to 3 months after surgery for use as predictors of patient reported outcomes 6 months after surgery. The dataset from this prospective observational study will be available for researchers internal and external to the A2CPS Consortium to advance understanding of the transition from acute to chronic postsurgical pain.

SELECTION OF CITATIONS
SEARCH DETAIL
...