Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Nat Commun ; 15(1): 4787, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839843

ABSTRACT

Pure organic phosphorescence resonance energy transfer is a research hotspot. Herein, a single-molecule phosphorescence resonance energy transfer system with a large Stokes shift of 367 nm and near-infrared emission is constructed by guest molecule alkyl-bridged methoxy-tetraphenylethylene-phenylpyridines derivative, cucurbit[n]uril (n = 7, 8) and ß-cyclodextrin modified hyaluronic acid. The high binding affinity of cucurbituril to guest molecules in various stoichiometric ratios not only regulates the topological morphology of supramolecular assembly but also induces different phosphorescence emissions. Varying from the spherical nanoparticles and nanorods for binary assemblies, three-dimensional nanoplate is obtained by the ternary co-assembly of guest with cucurbit[7]uril/cucurbit[8]uril, accompanying enhanced phosphorescence at 540 nm. Uncommonly, the secondary assembly of ß-cyclodextrin modified hyaluronic acid and ternary assembly activates a single intramolecular phosphorescence resonance energy transfer process derived from phenyl pyridines unit to methoxy-tetraphenylethylene function group, enabling a near-infrared delayed fluorescence at 700 nm, which ultimately applied to mitochondrial targeted imaging for cancer cells.


Subject(s)
Fluorescence Resonance Energy Transfer , Hyaluronic Acid , Imidazoles , beta-Cyclodextrins , beta-Cyclodextrins/chemistry , Humans , Hyaluronic Acid/chemistry , Imidazoles/chemistry , Fluorescence Resonance Energy Transfer/methods , Bridged-Ring Compounds/chemistry , Nanoparticles/chemistry , Stilbenes/chemistry , Pyridines/chemistry , HeLa Cells , Nanotubes/chemistry , Mitochondria/metabolism , Heterocyclic Compounds, 2-Ring , Macrocyclic Compounds , Imidazolidines
2.
J Food Sci ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829742

ABSTRACT

Opuntia ficus-indica fruit (OFI) is rich in bioactive compounds, which can promote human health. In this work, the purified OFI extract was prepared from OFI and its bioactivities were investigated. Xanthine oxidase (XOD) and α-glucosidase (α-Glu) inhibitors of the purified OFI extract were screened and identified by bio-affinity ultrafiltration combined with UPLC-QTRAP-MS/MS technology. The inhibitory effect of these inhibitors on enzymes were verified, and the potential mechanism of action and binding sites of inhibitors with enzymes were revealed based on molecular docking. The results showed that the total phenolic content of the purified OFI extract was 355.03 mg GAE/g DW, which had excellent antioxidant activity. Additionally, the extract had a certain inhibitory effect on XOD (IC50 = 199.00 ± 0.14 µg/mL) and α-Glu (IC50 = 159.67 ± 0.01 µg/mL). Seven XOD inhibitors and eight α-Glu inhibitors were identified. Furthermore, XOD and α-Glu inhibition experiments in vitro confirmed that inhibitors such as chlorogenic acid, taxifolin, and naringenin had significant inhibitory effects on XOD and α-Glu. The molecular docking results indicated that inhibitors could bind to the corresponding enzymes and had strong binding force. These findings demonstrate that OFI contains potential substances for the treatment of hyperuricemia and hyperglycemia.

3.
Sci Rep ; 14(1): 9131, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38644374

ABSTRACT

The chloroplast (cp) genome sequence of Mussaenda pubescens, a promising resource that is used as a traditional medicine and drink, is important for understanding the phylogenetic relationships among the Mussaenda family and genetic improvement and reservation. This research represented the first comprehensive description of the morphological characteristics of M. pubescens, as well as an analysis of the complete cp genome and phylogenetic relationship. The results indicated a close relationship between M. pubescens and M. hirsutula based on the morphological characteristics of the flower and leaves. The cp was sequenced using the Illumina NovaSeq 6000 platform. The results indicated the cp genome of M. pubescens spanned a total length of 155,122 bp, including a pair of inverted repeats (IRA and IRB) with a length of 25,871 bp for each region, as well as a large single-copy (LSC) region and a small single-copy (SSC) region with lengths of 85,370 bp and 18,010 bp, respectively. The results of phylogenetic analyses demonstrated that species within the same genus displayed a tendency to group closely together. It was suggested that Antirhea, Cinchona, Mitragyna, Neolamarckia, and Uncaria might have experienced an early divergence. Furthermore, M. hirsutula showed a close genetic connection to M. pubescens, with the two species having partially overlapping distributions in China. This study presents crucial findings regarding the identification, evolution, and phylogenetic research on Mussaenda plants, specifically targeting M. pubescens.


Subject(s)
Genome, Chloroplast , Phylogeny , Plant Leaves/genetics , Sequence Analysis, DNA/methods
4.
Physiol Plant ; 176(2): e14299, 2024.
Article in English | MEDLINE | ID: mdl-38628104

ABSTRACT

Mussaenda pubescens (Mp) is a valuable medicinal plant that has traditionally been used for medicinal purposes or as a tea substitute. However, there are few studies on the comprehensive and dynamic evaluation of Mp metabolites. This study used an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach and biochemical analysis to investigate substance changes in leaves at three different stages and elucidate the relationship between metabolites and antioxidant capacity. The findings showed that Mp leaves contained 957 metabolites, the majority of which were phenolic acids, lipids, and terpenoids. The metabolite profiling of Mp leaves was significantly influenced by their growth and development at different stages. A total of 317 differentially accumulated metabolites (DAMs) were screened, including 150 primary metabolites and 167 secondary metabolites, with 202 DAMs found in bud leaf vs. tender leaf, 54 DAMs in tender leaf vs. mature leaf, and 254 DAMs in bud leaf vs. mature leaf. Total phenolics, flavonoids, and anthocyanin concentrations decreased as Mp leaves grew and developed, whereas terpenoids increased significantly. The secondary metabolites also demonstrated a positive correlation with antioxidant activity. Phenolics, flavonoids, terpenoids, and anthocyanins were the primary factors influencing the antioxidant activity of leaves. These findings provide new insights into the metabolite formation mechanism, as well as the development and utilization of Mp tea.


Subject(s)
Anthocyanins , Antioxidants , Antioxidants/metabolism , Anthocyanins/metabolism , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Metabolomics/methods , Flavonoids/metabolism , Phenols/metabolism , Tea/metabolism , Terpenes/metabolism , Plant Leaves/metabolism
5.
Front Microbiol ; 15: 1372866, 2024.
Article in English | MEDLINE | ID: mdl-38525071

ABSTRACT

Soil enzymes play a central role in carbon and nutrient cycling, and their activities can be affected by drought-induced oxygen exposure. However, a systematic global estimate of enzyme sensitivity to drought in wetlands is still lacking. Through a meta-analysis of 55 studies comprising 761 paired observations, this study found that phosphorus-related enzyme activity increased by 38% as result of drought in wetlands, while the majority of other soil enzyme activities remained stable. The expansion of vascular plants under long-term drought significantly promoted the accumulation of phenolic compounds. Using a 2-week incubation experiment with phenol supplementation, we found that phosphorus-related enzyme could tolerate higher biotoxicity of phenolic compounds than other enzymes. Moreover, a long-term (35 years) drainage experiment in a northern peatland in China confirmed that the increased phenolic concentration in surface layer resulting from a shift in vegetation composition inhibited the increase in enzyme activities caused by rising oxygen availability, except for phosphorus-related enzyme. Overall, these results demonstrate the complex and resilient nature of wetland ecosystems, with soil enzymes showing a high degree of adaptation to drought conditions. These new insights could help evaluate the impact of drought on future wetland ecosystem services and provide a theoretical foundation for the remediation of degraded wetlands.

6.
Psych J ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363643

ABSTRACT

Interoception refers to the sensation and perception of internal bodily sensations, and may be related to depressive symptoms. Schemata concerning the body vary across different cultures and may influence interoception and symptom presentations of depression. This study explored the relationship between interoception, depressive symptoms, and schema of somatic focus in Chinese people with subsyndromal depression. Thirty-nine individuals with subsyndromal depression (SD) and 40 healthy controls (HCs) were assessed at baseline and after 3 months. Participants completed the self-report questionnaires for assessing interoceptive sensibility, somatic and psychological symptoms of depression, and somatization tendency. They also completed the heartbeat perception behavioral task for estimating interoceptive accuracy. The results showed that both the SD and the HC groups showed similar interoceptive accuracy, although the SD group showed heightened interoceptive sensibility. The discrepancy between interoceptive sensibility and interoceptive accuracy is termed the interoceptive trait prediction error (ITPE). The ITPE was positive in SD participants but was negative in HCs. In the entire sample, interoceptive sensibility and the ITPE were correlated with somatic symptoms rather than with psychological symptoms of depression. Interoceptive sensibility partially mediated the relationship between somatization tendency and somatic symptoms, after controlling for psychological symptoms of depression. These results remained stable after 3 months. The shortcomings of the present study were a lack of clinical interview to ascertain diagnosis and a short follow-up duration. In conclusion, our study suggests that altered interoception occurs in subsyndromal depression. Interoception is related to somatic symptoms of depression. The schema of body was related to depressive symptoms, partially through interoception, in Chinese people with subsyndromal depression.

7.
Phytopathology ; 114(1): 164-176, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37414414

ABSTRACT

Blister blight infection with Exobasidium vexans is one of the most destructive foliar diseases that seriously affect the quality and yield of tea. This research investigated the metabolite changes of healthy and infected leaves on tea cultivar 'Fuding Dabaicha' and further explored the potential antimicrobial substances against E. vexans infection. In total, 1,166 compounds were identified during the entire course of an infection, among which 73 different common compounds were significantly accumulated involved in the important antimicrobial substances of flavonoids and phenolic acids, including kaempferol (3,5,7,4'-tetrahydroxyflavone), kaempferol-3-O-sophoroside-7-O-glucoside, phloretin, 2,4,6-trihydroxybenzoic acid, galloylprocyanidin B4, and procyanidin C1 3'-O-gallate, which indicated that these metabolites might positively dominate resistance to E. vexans. Furthermore, relevant biological pathways, such as the flavone and flavonol biosynthesis, flavonoid biosynthesis, and phenylpropane pathways, were more closely related to resistance to E. vexans. Additionally, total flavonoids, phenolics, alkaloids, and terpenoids contributing to antimicrobial and antioxidant capacity were significantly altered during four different infection periods, especially the Leaf_S2 stage (the second stage of infection), in which the most concentration accumulated. The leaves affected by E. vexans infection at the second stage had the relatively highest antioxidant activity. Accordingly, this study provides a theoretical support for and comprehensive insights into the effects on the metabolite changes, tea quality components, and antioxidant activity of blister blight caused by E. vexans.


Subject(s)
Anti-Infective Agents , Basidiomycota , Camellia sinensis , Kaempferols/analysis , Kaempferols/metabolism , Antioxidants/metabolism , Tandem Mass Spectrometry , Chromatography, Liquid , Liquid Chromatography-Mass Spectrometry , Plant Diseases , Flavonoids/analysis , Flavonoids/metabolism , Metabolome , Tea/metabolism , Anti-Infective Agents/pharmacology , Plant Leaves/chemistry
8.
J Colloid Interface Sci ; 658: 805-814, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38154243

ABSTRACT

The cycloaddition reaction between CO2 and epoxide is an efficient way to convert CO2 into high value-added chemicals. Therefore, it is particularly important to develop efficient catalysts that can catalyze the reaction under mild conditions. In this work, a metal-organic framework (Bi-HHTP, consisting of bismuth (Bi) as metal dots and 2,3,6,7,10,11-hexahydroxy-triphenylene (HHTP) as organic linkers) with zigzagging corrugated topology was successfully synthesized, which shows excellent catalytic activity under visible light irradiation. Various characterizations suggest that the excellent activity is derived from the following reasons: (1) the abundant exposed Bi sites provide Lewis sites for adsorption of epoxides and CO2; (2) the free holes produced over Bi-HHTP under light irradiation which could oxidize epoxide, which consequently facilitateing the subsequent ring-opening reaction; and (3) the existence of synergistic photocatalytic and photothermal effect in Bi-HHTP. This study provides a new avenue of developing bismuth-based metal organic frameworks to promote the efficiency of cycloaddition of CO2 under mild conditions.

9.
Sci Total Environ ; 912: 169447, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38141987

ABSTRACT

Wetlands serve many functions, including conserving water, providing habitats for animals and plants, and regulating climate change. Their unique ecological effects on the natural environment are indispensable in the whole ecosystem. Dianchi Lake Basin is located in Yunnan-Guizhou Plateau, China, and mainly in Kunming. It is a typical plateau urban wetland area. Based on spatio-temporal hotspot mining, spatio-temporal geographically weighted regression, and adaptive multidimensional grey prediction, we conducted correlation analyses of the wetland changes in Dianchi Lake Basin from 1993 to 2020 under the influence of human activities and natural conditions. The results show that (1) the active wetland change zone in Dianchi Lake Basin is mainly located around Dianchi Lake, and (2) the wetlands in some areas on the north and south of Dianchi Lake declined in the early 21st century, but under the protection policy in recent years, the wetlands in these areas gradually recovered. Meanwhile, the wetlands in most areas around Dianchi Lake showed a significant growth trend from 2018 to 2020. The results suggest that the wetland change in Dianchi Lake Basin is mainly related to the urbanization of Kunming, and it can be divided into five regions (strong negative correlation, weak negative correlation, weak correlation, weak positive correlation, and strong positive correlation) according to the different correlation of human activity intensity, among which the main factors affected by nature are different, but they are all related to temperature. This study shows that, although wetlands in plateau cities can be properly restored under proper protection, wetland protection should be kept in step with the development of plateau cities to support sustainable urban development and carbon neutrality.


Subject(s)
Ecosystem , Wetlands , Humans , Lakes , Environmental Monitoring/methods , China
10.
Small ; : e2309732, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054610

ABSTRACT

Supramolecular polymerization can not only activate guest phosphorescence, but also promote phosphorescence Förster resonance energy transfer and induce effective delayed fluorescence. Herein, the solid supramolecular assemblies of ternary copolymers based on acrylamide, modified ß-cyclodextrin (CD), and carbazole (CZ) are reported. After doping with polyvinyl alcohol (PVA) and dyes, a NIR luminescence supramolecular composite with a lifetime of 1.07 s, an energy transfer efficiency of up to 97.4% is achieved through tandem phosphorescence energy transfer. The ternary copolymers can realize macrocyclic enrichment of dyes in comparison to CZ and acrylamide copolymers without CD, which can facilitate energy transfer between triplet and singlet with a high donor-acceptor ratio. Additionally, the flexible polymeric films exhibit regulable lifetime, tunable luminescence color, and repeatable switchable afterglow by adjusting the excitation wavelength, donor-acceptor ratio, and wet/dry stimuli. The luminescence materials are successfully applied to information encryption and anti-counterfeiting.

11.
Environ Res ; 239(Pt 1): 117364, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37827373

ABSTRACT

Comparing with the effect of the average climate change on vegetation phenology, the impacts of extreme climate events remain unclear, especially considering their characteristic cumulative and time-lag effects. Using solar-induced chlorophyll fluorescence (SIF) satellite records, we investigated the cumulative and time-lag effects of drought and heat events on photosynthesis, particularly for the end date of autumn photosynthesis (EOP), in subtropical vegetation in China. Our results showed a negative effect of drought on the delay of EOP, with the cumulative effect on 30.12% (maximum continuous dry days, CDD), 34.82% (dry days, DRD), and 26.14% (dry period, DSDI) of the study area and the general time-lag effect on 50.73% (maximum continuous dry days), 56.61% (dry days), and 47.55% (dry period) of the study area. The cumulative and lagged time were 1-3 months and 2-3 months, respectively. In contrast, the cumulative effect of heat on EOP was observed in 16.27% (warm nights, TN90P), 23.66% (moderate heat days, TX50P), and 19.19% (heavy heat days, TX90P) of the study area, with cumulative time of 1-3 months. The lagged time was 3-4 months, detected in 31.02% (warm nights), 45.86% (moderate heat days), and 36.52% (heavy heat days) of the study area. At the vegetation community level, drought and heat had relatively rapid impacts on EOP in the deciduous broadleaved forest, whereas evergreen forests and bushes responded to heat slowly and took a longer time. Our results revealed that drought and heat have short-term cumulative and time-lag effects on the EOP of subtropical vegetation in China, with varying effects among different vegetation types. These findings provide new insights into the effect of drought and heat on subtropical vegetation and confirm the need to consider these effects in the development of prediction models of autumn phenology for subtropical vegetation.


Subject(s)
Droughts , Hot Temperature , Photosynthesis , Forests , Sunlight , Seasons , China , Ecosystem , Climate Change
12.
Bull Menninger Clin ; 87(3): 225-249, 2023.
Article in English | MEDLINE | ID: mdl-37695882

ABSTRACT

This study evaluated COVID-19-related intrusive thoughts and associated ritualistic behaviors (CITRB). From March to May 2020, 1,118 Chinese high school students, college students, psychiatric outpatients, and community members completed a survey assessing CITRB, generalized anxiety, depression, somatization, obsessive-compulsive symptoms, and pandemic-related disruptions. Overall, participants reported mild to moderate CITRB, although certain thoughts/behaviors were more frequently endorsed, such as repeatedly telling others to take precautions against COVID-19 and checking COVID-19-related news. Being male, younger, a health-care worker, or in isolation/quarantine was associated with CITRB severity in community members. Obsessive-compulsive symptom severity, depression, somatic symptoms, and anxiety were associated with CITRB severity, although only obsessive-compulsive symptoms were uniquely associated with CITRB. This study provided evidence for the construct of CITRB, which may help mental health providers identify the nature and sources of COVID-19-related distress for some individuals as well as serve as a framework for evaluating obsessive-compulsive symptoms specific to large-scale crises.


Subject(s)
COVID-19 , Mental Disorders , Mental Health , Female , Humans , Male , Anxiety , Anxiety Disorders , Asian People , COVID-19/complications , COVID-19/psychology , Health Surveys , Mental Disorders/etiology , Mental Disorders/psychology , Obsessive-Compulsive Disorder/etiology , Obsessive-Compulsive Disorder/psychology , Psychological Distress , China
13.
Chemosphere ; 341: 140006, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37683948

ABSTRACT

Biochar-based supported denitration catalysts have shown tremendous potential in reducing NOx, while improving low-temperature NH3-SCR catalytic activity and SO2 tolerance still faces great challenges. In this work, Mn7-Cu3/BCN and Mn7-Cu3-Nbx/BCN catalysts were prepared by one-step wet impregnation. The enhanced effect of Nb doping on the catalytic performance and SO2 tolerance over the Mn7-Cu3/BCN catalyst was evaluated in the temperature range of 75-275 °C. The denitrification activity test showed that the introduction of an appropriate amount of Nb increased the catalytic activity and N2 selectivity of the catalyst. The NO conversion of Mn7-Cu3-Nb0.05/BCN with an optimum doping ratio of 0.05 wt% Nb was higher than 94% at 150-275 °C. The characterization results indicated that the introduction of Nb enhanced the interaction between the active components MnOx and CuOx, accelerated the electron transfer between elements, and thus improved the Mn4+/Mnn+ and Oα/(Oα+Oß+Oγ) proportions and redox performance. On the other hand, Nb modification increased the number of weakly acidic sites, which was beneficial for the adsorption and activation of the reducing agent NH3 under low-temperature conditions. Meanwhile, Nb could significantly improve the SO2 poisoning resistance of the Mn7-Cu3/BCN-S catalyst when SO2 was added to the reaction system. The NO conversion of Mn7-Cu3-Nb0.05/BCN remained above 75% after a 13.5 h reaction under 100 ppm SO2 and 5 vol% H2O at 225 °C. By combining experimental characterization results with DFT calculation results, we effectively confirmed that Mn7-Cu3-Nb0.05/BCN had good sulfur resistance, mainly because Nb could effectively inhibit the formation of manganese sulfate and promote the decomposition of ammonium bisulfate.


Subject(s)
Cold Temperature , Niobium , Temperature , Adsorption , Catalysis
14.
Chem Commun (Camb) ; 59(77): 11516-11519, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37691476

ABSTRACT

A triazine pyridinium derivative (TAZpy) was encapsulated into the cavity of a cucurbit[7]uril and further assembled with sulfonatocalix[4]-arene, hyaluronic acid and commercial dyes, which not only achieved fluorescence cascade enhancement and an effective FRET process based on macrocyclic confinement, but was also applied in two-photon NIR targeted cell imaging.


Subject(s)
Fluorescence Resonance Energy Transfer , Gastropoda , Animals , Diagnostic Imaging , Coloring Agents , Triazines
15.
World J Gastrointest Surg ; 15(7): 1375-1387, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37555125

ABSTRACT

BACKGROUND: Preoperative anemia is associated with increased postoperative morbidity and mortality and increased perioperative transfusion risk. For surgical patients, this affects physical and cognitive ability and quality of life, but it is an important and modifiable risk factor. AIM: To determine the effect of preoperative anemia on the prognosis of gastric cancer (GC) patients and generate a prognostic nomogram to predict the postoperative overall survival (OS) of GC patients with preoperative anemia. METHODS: Clinicopathological and follow-up data of GC patients treated at Zhejiang Provincial People's Hospital (China) from 2010 to 2015 were collected. Independent prognostic factors were screened by univariate and multivariate Cox regression analyses. Then, these factors were used to construct a nomogram to predict 1-, 3-, and 5-year postoperative OS in preoperative anemic GC patients. The nomogram was assessed by calibration curves, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA). RESULTS: Nine hundred and sixty GC patients were divided into two groups (preoperatively anemic and nonanemic), and postoperative survival analysis was performed on both groups, yielding a shorter postoperative survival for preoperatively anemic patients than for nonanemic patients. A total of 347 GC patients with preoperative anemia were included. Age, preoperative alpha-fetoprotein level, monocyte count, lymphocyte count, clinicopathological stage, liver metastasis, and GC type were identified as independent prognostic factors for OS. The area under the ROC curve (AUC) of the nomogram for predicting 1-, 3-, and 5-year OS was 0.831, 0.845, and 0.840, respectively, for the training cohort, and the corresponding AUC values in the validation cohort were 0.827, 0.829, and 0.812, respectively. Calibration curves and DCA indicated good performance of the nomogram. CONCLUSION: In all, we have successfully produced and verified a useful nomogram for predicting OS in GC patients with preoperative anemia. This nomogram based on a variety of clinicopathological indices can provide an effective prognostic assessment and help clinicians choose an appropriate treatment strategy for GC patients with preoperative anemia.

16.
JACS Au ; 3(7): 2036-2043, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37502156

ABSTRACT

A multicolor persistent luminescence solid polymeric system based on macrocycle-confined phosphorescence energy transfer was constructed with γ-cyclodextrin (γ-CD) and poly(vinyl alcohol) modified by triphenylene derivative (TP-PVA). Attributed to the fact that macrocycles effectively suppress the aggregation of guests and form a rigid environment via coassembling with the polymer, the phosphorescence lifetime of the yielded polymeric films is prolonged from 0.22 to 5.84 s, accompanied by a visible afterglow of more than 1 min. Furthermore, upon doping with several commercial dyes, full-color afterglow emissions with a duration of more than 50 s are realized through phosphorescence energy transfer. Notably, the multicolor-emitting-afterglow materials are successfully exploited for noctilucent lighting and anticounterfeiting ink.

17.
Foods ; 12(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37048203

ABSTRACT

Bamboo shoots (BS) have a variety of nutritional benefits; however, their anti-obesity effect and its underlying mechanism of action are still unclear. In this study, we investigated the protective effect of BS against high-fat diet (HFD)-induced gut dysbiosis in mice. After 12 weeks of feeding C57BL/6J mice either on a normal or an HFD with or without BS, metabolic indicators, including blood lipids and glucose tolerance, were measured. 16S rRNA gene sequencing and metabolomics were used to identify alterations in gut microbiota composition and fecal metabolic profiling. The results demonstrated that BS supplementation reduced body weight by 30.56%, mitigated liver damage, and improved insulin resistance and inflammation in obese mice. In addition, BS increased short-chain fatty acid (SCFA) levels and SCFA-producing bacteria (e.g., Lachnospiraceae_NK4A136_group and Norank_f_Muribaculaceae), and reduced levels of harmful bacteria (e.g., Blautia and Burkholderia-Paraburkholderia). Finally, BS increased many beneficial fecal metabolites, such as fatty acids and bile acids, which are highly relevant to the altered gut microbiota. Based on the modulatory effect of BS on microbiota composition and gut metabolite levels observed in this study, we suggest that BS may be beneficial in treating obesity and its related complications.

18.
J Chromatogr A ; 1695: 463950, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37003077

ABSTRACT

Schisandrol A (SchA) is the main active ingredient of Schisandra chinensis (Turcz.) Baill., which is a famous traditional Chinese herbal medicine. SchA can penetrate the blood-brain barrier and has a significant neuroprotective effect. A group of multiplexed stable isotope mass tags (MSIMTs, m/z 332, 338, 346, 349, 351, 354, 360, 363, 374 and 377) were synthesized to perform multiplexed stable isotope labeling derivatization (MSILD) of SchA in rat microdialysates and standards. A new magnetic molecularly imprinted polymer was prepared using MSIMT-375-SchA as dummy template. All the 10-plexed derivatives of MSIMTs-SchA can be efficiently and selectively enriched and purified using this adsorbent by magnetic dispersive solid phase extraction (MDSPE) before ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis. It should be pointed out that the MSIMT-346-SchA standard derivative was used as internal standard in the process of MDSPE and UHPLC-MS/MS. On these bases, 9 different rat microdialysate samples can be determined by UHPLC-MS/MS in a single run. The utilization of MSIMTs significantly increased the sensitivity, accuracy, selectivity and analysis throughput. Under the optimized conditions, satisfactory linearity (R2> 0.987), limit of detection (LODs, 0.15-0.26 pg/mL) and lower limit of quantitative (LLOQ, 0.8-2.0 pg/mL) were obtained. Intra- and inter-day precisions were in the range of 2.2% -12.5%, and recoveries 94.2% -106.2%. The matrix effects were very low, and the average derivatization efficiency of 10-plex MSIMTs to SchA was as high as 97.8%. Using the developed dual-probe in vivo microdialysis sampling technique, the proposed analytical method has been applied for comparative pharmacokinetics of SchA in the brain and blood of control and Parkinson's disease (PD) rats.


Subject(s)
Parkinson Disease , Rats , Animals , Tandem Mass Spectrometry/methods , Microdialysis , Brain , Chromatography, High Pressure Liquid/methods
19.
Trends Plant Sci ; 28(9): 1014-1032, 2023 09.
Article in English | MEDLINE | ID: mdl-37087358

ABSTRACT

As global climate conditions continue to change, disturbance regimes and environmental drivers will continue to shift, impacting global vegetation dynamics. Following a period of vegetation greening, there has been a progressive increase in remotely sensed vegetation browning globally. Given the many societal benefits that forests provide, it is critical that we understand vegetation dynamic alterations. Here, we review associative drivers, impacts, and feedbacks, revealing the complexity of browning. Concomitant increases in browning include the weakening of ecosystem services and functions and alterations to vegetation structure and species composition, as well as the development of potential positive climate change feedbacks. Also discussed are the current challenges in browning detection and understanding associated impacts and feedbacks. Finally, we outline recommended strategies.


Subject(s)
Ecosystem , Forests , Feedback , Climate Change
20.
Front Nutr ; 10: 1161698, 2023.
Article in English | MEDLINE | ID: mdl-36969828

ABSTRACT

Introduction: Obesity is a common nutritional disorder characterized by an excessive fat accumulation. In view of the critical role of gut microbiota in the development of obesity and metabolic diseases, novel dietary therapies have been developed to manage obesity by targeting the gut microbiome. In this study, we investigated anti-obesity effects of bamboo shoot dietary fiber (BSDF) and the potential mechanisms. Methods: After 12 weeks of intervention with BSDF in high-fat mice, we detected obesity-related phenotypic indicators, and made transcriptomic analysis of liver tissue. Then we analyzed the changes of gut microbiota using 16S rRNA gene sequencing, explored the effect of BSDF on gut microbiota metabolites, and finally verified the importance of gut microbiota through antibiotic animal model. Results and discussion: We found that BSDF was effective in reducing lipid accumulation in liver and adipose tissue and alleviating dyslipidemia and insulin resistance. Liver transcriptome analysis results showed that BSDF could improve lipid metabolism and liver injury by modulating peroxisome proliferator-activated receptor (PPAR) and fatty acid metabolic pathways. The 16S rRNA gene sequencing analysis of gut microbiota composition showed that BSDF significantly enriched beneficial bacteria such as Bifidobacterium, Akkermansia, Dubosiella, and Alloprevotella. Analysis of fecal metabolomics and gut microbiota metabolites revealed that BSDF increased the levels of several short-chain fatty acids and enriched bile acids, which may be important for improving lipid metabolism. Notably, the obesity-related metabolic disorders were abrogated after the abrogation of gut microbiota, suggesting that gut microbiota is a key factor in the beneficial effects of BSDF. Conclusion: Our study suggests that BSDF as a prebiotic supplement has the potential to improve obesity by improving gut microbiota and modulating host PPAR and fatty acid metabolic pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...