Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microsc Microanal ; 29(Supplement_1): 334-335, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37613590
2.
Angew Chem Int Ed Engl ; 60(49): 25815-25824, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34459093

ABSTRACT

The highly unfavorable thermodynamics of direct aluminum hydrogenation can be overcome by stabilizing alane within a nanoporous bipyridine-functionalized covalent triazine framework (AlH3 @CTF-bipyridine). This material and the counterpart AlH3 @CTF-biphenyl rapidly desorb H2 between 95 and 154 °C, with desorption complete at 250 °C. Sieverts measurements, 27 Al MAS NMR and 27 Al{1 H} REDOR experiments, and computational spectroscopy reveal that AlH3 @CTF-bipyridine dehydrogenation is reversible at 60 °C under 700 bar hydrogen, >10 times lower pressure than that required to hydrogenate bulk aluminum. DFT calculations and EPR measurements support an unconventional mechanism whereby strong AlH3 binding to bipyridine results in single-electron transfer to form AlH2 (AlH3 )n clusters. The resulting size-dependent charge redistribution alters the dehydrogenation/rehydrogenation thermochemistry, suggesting a novel strategy to enable reversibility in high-capacity metal hydrides.

3.
J Comput Chem ; 41(13): 1299-1309, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32112574

ABSTRACT

Reducing hydrogen embrittlement in the low-cost Fe─C based steels have the potential to significantly impact the development of hydrogen energy technologies. Molecular dynamics studies of hydrogen interactions with Fe─C steels provide fundamental information about the behavior of hydrogen at microstructural length scales, although such studies have not been performed due to the lack of an Fe─C─H ternary interatomic potential. In this work, the literature on interatomic potentials related to the Fe─C─H systems are reviewed with the aim of constructing an Fe─C─H potential from the published binary potentials. We found that Fe─C, Fe─H, and C─H bond order potentials exist and can be combined to construct an Fe─C─H ternary potential. Therefore, we constructed two such Fe─C─H potentials and demonstrate that these ternary potentials can reasonably capture hydrogen effects on deformation characteristics and deformation mechanisms for a variety of microstructural variations of the Fe─C steels, including martensite that results from γ to α phase transformation, and pearlite that results from the eutectic formation of the Fe3 C cementite compound.

4.
Nanomaterials (Basel) ; 9(4)2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30987313

ABSTRACT

Molecular dynamics (MD) simulations have been applied to study mobilities of Σ3, Σ7 and Σ11 grain boundaries in CdTe. First, an existing MD approach to drive the motion of grain boundaries in face-centered-cubic and body-centered-cubic crystals was generalized for arbitrary crystals. MD simulations were next performed to calculate grain boundary velocities in CdTe crystals at different temperatures, driving forces, and grain boundary terminations. Here a grain boundary is said to be Te-terminated if its migration encounters sequentially C d · T e - C d · T e … planes, where "·" and "-" represent short and long spacing respectively. Likewise, a grain boundary is said to be Cd-terminated if its migration encounters sequentially T e · C d - T e · C d … planes. Grain boundary mobility laws, suitable for engineering time and length scales, were then obtained by fitting the MD results to Arrhenius equation. These studies indicated that the Σ3 grain boundary has significantly lower mobility than the Σ7 and Σ11 grain boundaries. The Σ7 Te-terminated grain boundary has lower mobility than the Σ7 Cd-terminated grain boundary, and that the Σ11 Cd-terminated grain boundary has lower mobility than the Σ11 Te-terminated grain boundary.

5.
Chemphyschem ; 20(10): 1404-1411, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30644619

ABSTRACT

Magnesium-based materials provide some of the highest capacities for solid-state hydrogen storage. However, efforts to improve their performance rely on a comprehensive understanding of thermodynamic and kinetic limitations at various stages of (de)hydrogenation. Part of the complexity arises from the fact that unlike interstitial metal hydrides that retain the same crystal structures of the underlying metals, MgH2 and other magnesium-based hydrides typically undergo dehydrogenation reactions that are coupled to a structural phase transformation. As a first step towards enabling molecular dynamics studies of thermodynamics, kinetics, and (de)hydrogenation mechanisms of Mg-based solid-state hydrogen storage materials with changing crystal structures, we have developed an analytical bond order potential for Mg-H systems. We demonstrate that our potential accurately reproduces property trends of a variety of elemental and compound configurations with different coordinations, including small clusters and bulk lattices. More importantly, we show that our potential captures the relevant (de)hydrogenation chemical reactions 2H (gas)→H2 (gas) and 2H (gas)+Mg (hcp)→MgH2 (rutile) within molecular dynamics simulations. This verifies that our potential correctly prescribes the lowest Gibbs free energies to the equilibrium H2 and MgH2 phases as compared to other configurations. It also indicates that our molecular dynamics methods can directly reveal atomic processes of (de)hydrogenation of the Mg-H systems.

6.
J Comput Chem ; 39(29): 2420-2431, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30379326

ABSTRACT

Fe-Ni-Cr stainless-steels are important structural materials because of their superior strength and corrosion resistance. Atomistic studies of mechanical properties of stainless-steels, however, have been limited by the lack of high-fidelity interatomic potentials. Here using density functional theory as a guide, we have developed a new Fe-Ni-Cr embedded atom method potential. We demonstrate that our potential enables stable molecular dynamics simulations of stainless-steel alloys at high temperatures, accurately reproduces the stacking fault energy-known to strongly influence the mode of plastic deformation (e.g., twinning vs. dislocation glide vs. cross-slip)-of these alloys over a range of compositions, and gives reasonable elastic constants, energies, and volumes for various compositions. The latter are pertinent for determining short-range order and solute strengthening effects. Our results suggest that our potential is suitable for studying mechanical properties of austenitic and ferritic stainless-steels which have vast implementation in the scientific and industrial communities. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

7.
Sci Adv ; 3(5): e1602916, 2017 May.
Article in English | MEDLINE | ID: mdl-28508074

ABSTRACT

Oriented attachment (OA) of synthetic nanocrystals is emerging as an effective means of fabricating low-dimensional nanoscale materials. However, OA relies on energetically favorable nanocrystal facets to grow nanostructured materials. Consequently, nanostructures synthesized through OA are generally limited to a specific crystal facet in their final morphology. We report our discovery that high-pressure compression can induce consolidation of spherical CdSe nanocrystal arrays, leading to unexpected one-dimensional semiconductor nanowires that do not exhibit the typical crystal facet. In particular, in situ high-pressure synchrotron x-ray scattering, optical spectroscopy, and high-resolution transmission electron microscopy characterizations indicate that by manipulating the coupling between nanocrystals through external pressure, a reversible change in nanocrystal assemblies and properties can be achieved at modest pressure. When pressure is increased above a threshold, these nanocrystals begin to contact one another and consolidate, irreversibly forming one-dimensional luminescent nanowires. High-fidelity molecular dynamics (MD) methods were used to calculate surface energies and simulate compression and coalescence mechanisms of CdSe nanocrystals. The MD results provide new insight into nanowire assembly dynamics and phase stability of nanocrystalline structures.

8.
Phys Chem Chem Phys ; 16(20): 9403-10, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24722642

ABSTRACT

GaN nanowires are being pursued for optoelectronic and high-power applications. In either use, increases in operating temperature reduce both performance and reliability making it imperative to minimize thermal resistances. Since interfaces significantly influence the thermal response of nanosystems, the thermal boundary resistance between GaN nanowires and metal contacts has major significance. In response, we have performed systematic molecular dynamics simulations to study the thermal boundary conductance between GaN nanowires and Al films as a function of nanowire dimensions, packing density, and the depth the nanowire is embedded into the metal contact. At low packing densities, the apparent Kapitza conductance between GaN nanowires and an aluminum film is shown to be larger than when contact is made between films of these same materials. This enhancement decreases toward the film-film limit, however, as the packing density increases. For densely packed nanowires, maximizing the Kapitza conductance can be achieved by embedding the nanowires into the films, as the conductance is found to be proportional to the total contact area.

9.
J Mol Model ; 19(12): 5469-77, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24220925

ABSTRACT

This paper reports an updated parameterization for a CdTe bond order potential. The original potential is a rigorously parameterized analytical bond order potential for ternary the Cd-Zn-Te systems. This potential effectively captures property trends of multiple Cd, Zn, Te, CdZn, CdTe, ZnTe, and Cd(1-x)Zn(x)Te phases including clusters, lattices, defects, and surfaces. It also enables crystalline growth simulations of stoichiometric compounds/alloys from non-stoichiometric vapors. However, the potential over predicts the zinc-blende CdTe lattice constant compared to experimental data. Here, we report a refined analytical Cd-Zn-Te bond order potential parameterization that predicts a better CdTe lattice constant. Characteristics of the second potential are given based on comparisons with both literature potentials and the quantum mechanical calculations.

10.
J Phys Chem C Nanomater Interfaces ; 116(33): 17563-17571, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22962626

ABSTRACT

Cd(1-x)Zn(x)Te (CZT) crystals are the leading semiconductors for radiation detection, but their application is limited by the high cost of detector-grade materials. High crystal costs primarily result from property nonuniformity that causes low manufacturing yield. Although tremendous efforts have been made in the past to reduce Te inclusions/precipitates in CZT, this has not resulted in an anticipated improvement in material property uniformity. Moreover, it is recognized that in addition to Te particles, dislocation cells can also cause electric field perturbations and the associated property nonuniformities. Further improvement of the material, therefore, requires that dislocations in CZT crystals be understood and controlled. Here, we use a recently developed CZT bond order potential to perform representative molecular dynamics simulations to study configurations, energies, and mobilities of 29 different types of possible dislocations in CdTe (i.e., x = 1) crystals. An efficient method to derive activation free energies and activation volumes of thermally activated dislocation motion will be explored. Our focus gives insight into understanding important dislocations in the material and gives guidance toward experimental efforts for improving dislocation network structures in CZT crystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...