Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Exp Dermatol ; 33(6): e15119, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881438

ABSTRACT

This manuscript presents a comprehensive investigation into the role of lactate metabolism-related genes as potential prognostic markers in skin cutaneous melanoma (SKCM). Bulk-transcriptome data from The Cancer Genome Atlas (TCGA) and GSE19234, GSE22153, and GSE65904 cohorts from GEO database were processed and harmonized to mitigate batch effects. Lactate metabolism scores were assigned to individual cells using the 'AUCell' package. Weighted Co-expression Network Analysis (WGCNA) was employed to identify gene modules correlated with lactate metabolism. Machine learning algorithms were applied to construct a prognostic model, and its performance was evaluated in multiple cohorts. Immune correlation, mutation analysis, and enrichment analysis were conducted to further characterize the prognostic model's biological implications. Finally, the function of key gene NDUFS7 was verified by cell experiments. Machine learning resulted in an optimal prognostic model, demonstrating significant prognostic value across various cohorts. In the different cohorts, the high-risk group showed a poor prognosis. Immune analysis indicated differences in immune cell infiltration and checkpoint gene expression between risk groups. Mutation analysis identified genes with high mutation loads in SKCM. Enrichment analysis unveiled enriched pathways and biological processes in high-risk SKCM patients. NDUFS7 was found to be a hub gene in the protein-protein interaction network. After the expression of NDUFS7 was reduced by siRNA knockdown, CCK-8, colony formation, transwell and wound healing tests showed that the activity, proliferation and migration of A375 and WM115 cell lines were significantly decreased. This study offers insights into the prognostic significance of lactate metabolism-related genes in SKCM.


Subject(s)
Lactic Acid , Machine Learning , Melanoma , Skin Neoplasms , Humans , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Melanoma/genetics , Melanoma/metabolism , Prognosis , Lactic Acid/metabolism , Single-Cell Analysis , Mutation , Transcriptome , Melanoma, Cutaneous Malignant , Cell Line, Tumor , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
2.
Cell Biol Toxicol ; 40(1): 44, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862832

ABSTRACT

BACKGROUND: Vasculogenic mimicry (VM) is an enigmatic physiological feature that influences blood supply within glioblastoma (GBM) tumors for their sustained growth. Previous studies identify NFATC3, FOSL1 and HNRNPA2B1 as significant mediators of VEGFR2, a key player in vasculogenesis, and their molecular relationships may be crucial for VM in GBM. AIMS: The aim of this study was to understand how NFATC3, FOSL1 and HNRNPA2B1 collectively influence VM in GBM. METHODS: We have investigated the underlying gene regulatory mechanisms for VM in GBM cell lines U251 and U373 in vitro and in vivo. In vitro cell-based assays were performed to explore the role of NFATC3, FOSL1 and HNRNPA2B1 in GBM cell proliferation, VM and migration, in the context of RNA interference (RNAi)-mediated knockdown alongside corresponding controls. Western blotting and qRT-PCR assays were used to examine VEGFR2 expression levels. CO-IP was employed to detect protein-protein interactions, ChIP was used to detect DNA-protein complexes, and RIP was used to detect RNA-protein complexes. Histochemical staining was used to detect VM tube formation in vivo. RESULTS: Focusing on NFATC3, FOSL1 and HNRNPA2B1, we found each was significantly upregulated in GBM and positively correlated with VM-like cellular behaviors in U251 and U373 cell lines. Knockdown of NFATC3, FOSL1 or HNRNPA2B1 each resulted in decreased levels of VEGFR2, a key growth factor gene that drives VM, as well as the inhibition of proliferation, cell migration and extracorporeal VM activity. Chromatin immunoprecipitation (ChIP) studies and luciferase reporter gene assays revealed that NFATC3 binds to the promoter region of VEGFR2 to enhance VEGFR2 gene expression. Notably, FOSL1 interacts with NFATC3 as a co-factor to potentiate the DNA-binding capacity of NFATC3, resulting in enhanced VM-like cellular behaviors. Also, level of NFATC3 protein in cells was enhanced through HNRNPA2B1 binding of NFATC3 mRNA. Furthermore, RNAi-mediated silencing of NFATC3, FOSL1 and HNRNPA2B1 in GBM cells reduced their capacity for tumor formation and VM-like behaviors in vivo. CONCLUSION: Taken together, our findings identify NFATC3 as an important mediator of GBM tumor growth through its molecular and epistatic interactions with HNRNPA2B1 and FOSL1 to influence VEGFR2 expression and VM-like cellular behaviors.


Subject(s)
Cell Movement , Cell Proliferation , Glioblastoma , Heterogeneous-Nuclear Ribonucleoprotein Group A-B , NFATC Transcription Factors , Neovascularization, Pathologic , Proto-Oncogene Proteins c-fos , Humans , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/blood supply , Cell Line, Tumor , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Animals , Cell Proliferation/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Cell Movement/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Gene Expression Regulation, Neoplastic , Mice , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/blood supply , Mice, Nude
3.
J Transl Med ; 22(1): 584, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902717

ABSTRACT

BACKGROUND: KIAA1429, a regulatory subunit of the N6-methyladenosine (m6A) methyltransferase complex, has been implicated in the progression of various cancers. However, the role of KIAA1429 in gastric cancer (GC) and its underlying mechanisms remain elusive. This study aimed to investigate the role of KIAA1429 in GC and to elucidate the underlying mechanisms. METHODS: The expression patterns and clinical relevance of KIAA1429 in GC were assessed using quantitative real-time PCR (qRT-PCR), Western blotting, immunohistochemistry (IHC), and bioinformatic analysis. In vitro and in vivo loss- and gain-of-function assays, m6A dot blot assays, methylated RNA immunoprecipitation sequencing (MeRIP-seq), RNA-seq, MeRIP-qPCR, dual luciferase reporter assays, RNA stability assays, RNA immunoprecipitation (RIP) assays, and RNA pull-down assays were performed to investigate the biological functions and underlying molecular mechanisms of KIAA1429 in GC. RESULTS: Both the mRNA and protein expression of KIAA1429 were greater in GC tissues than in normal gastric tissues. High KIAA1429 expression correlated positively with poor prognosis in GC patients. KIAA1429 not only promoted GC cell proliferation, colony formation, G2/M cell cycle transition, migration, and invasion in vitro but also enhanced GC tumor growth and metastasis in vivo. Mechanistically, KIAA1429 increased the m6A level of RASD1 mRNA and enhanced its stability in an m6A-YTHDF2-dependent manner, thereby upregulating its expression. RASD1 knockdown partially rescued the KIAA1429 knockdown-induced impairment of pro­oncogenic ability in GC cells. The expression levels of KIAA1429 and RASD1 were negatively correlated in GC tissues. CONCLUSIONS: KIAA1429 plays a pro­oncogenic role in GC by downregulating RASD1 expression through destabilizing RASD1 mRNA in an m6A-YTHDF2-dependent manner. KIAA1429 may serve as a prognostic biomarker and therapeutic target for GC.


Subject(s)
Adenosine , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , RNA Stability , RNA, Messenger , RNA-Binding Proteins , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , Cell Line, Tumor , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Proliferation/genetics , Animals , RNA Stability/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Male , Mice, Nude , Female , Middle Aged , Cell Movement/genetics , Mice , Prognosis , Mice, Inbred BALB C
4.
J Environ Manage ; 361: 121248, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38820798

ABSTRACT

One of the main reasons for the decline in global freshwater biodiversity can be attributed to alterations in hydrological conditions resulting from dam construction. However, the majority of current research has focused on single or limited numbers of dams. Here, we carried out a seasonal fish survey, using environmental DNA (eDNA) method, on the Wujiang River mainstream (Tributaries of the Yangtze River, China) to investigate the impact of large-scale cascade hydropower development on changes in fish diversity patterns. eDNA survey revealed that native fish species have decreased in contrast to alien fish. There was also a shift in fish community structure, with declines of the dominant rheophilic fish species, an increase of the small-size fish species, and homogenization of species composition across reservoirs. Additionally, environmental factors, such as temperature, dissolved oxygen and reservoir age, had a significant effect on fish community diversity. This study provides basic information for the evaluation of the impact of cascade developments on fish diversity patterns.


Subject(s)
Biodiversity , Fishes , Rivers , Animals , Fishes/genetics , China , DNA, Environmental/analysis
5.
Infect Dis Poverty ; 13(1): 29, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622750

ABSTRACT

BACKGROUND: Culex pipiens pallens and Culex pipiens quinquefasciatus are the dominant species of Culex mosquitoes in China and important disease vectors. Long-term use of insecticides can cause mutations in the voltage-gated sodium channel (vgsc) gene of mosquitoes, but little is known about the current status and evolutionary origins of vgsc gene in different geographic populations. Therefore, this study aimed to determine the current status of vgsc genes in Cx. p. pallens and Cx. p. quinquefasciatus in China and to investigate the evolutionary inheritance of neighboring downstream introns of the vgsc gene to determine the impact of insecticides on long-term evolution. METHODS: Sampling was conducted from July to September 2021 in representative habitats of 22 provincial-level administrative divisions in China. Genomic DNA was extracted from 1308 mosquitoes, the IIS6 fragment of the vgsc gene on the nerve cell membrane was amplified using polymerase chain reaction, and the sequence was used to evaluate allele frequency and knockdown resistance (kdr) frequency. MEGA 11 was used to construct neighbor-joining (NJ) tree. PopART was used to build a TCS network. RESULTS: There were 6 alleles and 6 genotypes at the L1014 locus, which included the wild-type alleles TTA/L and CTA/L and the mutant alleles TTT/F, TTC/F, TCT/S and TCA/S. The geographic populations with a kdr frequency less than 20.00% were mainly concentrated in the regions north of 38° N, and the geographic populations with a kdr frequency greater than 80.00% were concentrated in the regions south of 30° N. kdr frequency increased with decreasing latitude. And within the same latitude, the frequency of kdr in large cities is relatively high. Mutations were correlated with the number of introns. The mutant allele TCA/S has only one intron, the mutant allele TTT/F has three introns, and the wild-type allele TTA/L has 17 introns. CONCLUSIONS: Cx. p. pallens and Cx. p. quinquefasciatus have developed resistance to insecticides in most regions of China. The neighboring downstream introns of the vgsc gene gradually decreased to one intron with the mutation of the vgsc gene. Mutations may originate from multiple mutation events rather than from a single origin, and populations lacking mutations may be genetically isolated.


Subject(s)
Culex , Culicidae , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Insecticides/pharmacology , Introns/genetics , Mosquito Vectors/genetics , Culex/genetics , Mutation , Voltage-Gated Sodium Channels/genetics , Insecticide Resistance/genetics
6.
Sci Rep ; 14(1): 9124, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38643212

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), is associated with altered gut microbiota; however, there has been a focus on fecal samples, which are not representative of the entire digestive tract. Mucosal biopsies of the descending duodenum were collected. Five regions of the 16S rRNA gene were amplified and sequenced. Other assessments conducted on the study subjects included body mass index, transient elastography, liver enzymes, and lipid profile. Fifty-one subjects (36 with MASLD and 15 controls) were evaluated. There was no significant difference between the two groups regarding alpha- or beta-diversity of the duodenal mucosal microbiota. Linear discriminant analysis effect size (LEfSe) analysis showed that the genera Serratia and Aggregatibacter were more abundant in the duodenal mucosa of patients with MASLD, whereas the duodenal mucosal microbiota of the healthy controls was enriched with the genus Petrobacter. PICRUSt2 analysis revealed that genes associated with amino acid degradation and carboxylate degradation were significantly enriched in the duodenal mucosal microbiota of patients with MASLD. Our findings reveal the duodenal mucosal microbiota in patients with MASLD, which could contribute to future studies investigating the causal relationship between duodenal microbiota and MASLD.


Subject(s)
Metabolic Diseases , Microbiota , Non-alcoholic Fatty Liver Disease , Humans , RNA, Ribosomal, 16S/genetics , Duodenum
7.
Sci Total Environ ; 924: 171565, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38461984

ABSTRACT

Gout is a metabolic arthritis caused by hyperuricemia. In recent years, the prevalence of gout has been increased significantly in China due to the improvement of the living standards, and gout has become another common metabolic disease following diabetes mellitus. Gout severely affects the health status and life quality of human. In order to monitor the near real-time prevalence of gout, a wastewater-based epidemiology (WBE) approach was carried out in 257 Chinese cities using febuxostat as the biomarker. Febuxostat in wastewater was measured by a LC-MS/MS method with satisfactory results of method validation. The average concentration of febuxostat in wastewater was 53.05 ± 31.76 ng/L, with the estimated per capita consumption of 124.40 ± 73.37 mg/day/1000 inhabitant. The calculated prevalence of febuxostat was 0.41 % ± 0.24 %, and the prevalence of gout was finally estimated to be 1.30 % ± 0.77 % (0.60 % to 2.11 %), which was nearly consistent with value of 1.10 % obtained from the Guideline for the diagnosis and management of hyperuricemia and gout in China (2019). The results indicated that the febuxostat-based WBE approach might be reasonable to assess the near real-time gout prevalence in China.


Subject(s)
Gout , Hyperuricemia , Humans , Hyperuricemia/epidemiology , Hyperuricemia/diagnosis , Febuxostat/therapeutic use , Wastewater-Based Epidemiological Monitoring , Prevalence , Chromatography, Liquid , Wastewater , Tandem Mass Spectrometry , Gout/epidemiology , Gout/diagnosis , China/epidemiology
8.
Sci Total Environ ; 924: 171659, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38490426

ABSTRACT

Diabetes mellitus, a metabolic disease characterized by hyperglycemia, has been witnessed as a rapidly escalating worldwide health crisis. China currently had 140.9 million diabetic population in 2021, which was the largest globally. DM has witnessed a significant surge in the past few decades, leading to an alarming rise in the overall burden caused by this disease. To monitor the near real-time DM prevalence and the consumption of first-line anti-diabetic drugs, a wastewater-based epidemiology (WBE) approach based on the back-calculation of metformin concentration was implemented in 237 cities in China. The quantitative analysis of metformin in wastewater was conducted by LC-MS/MS with satisfactory results of method validation. The average concentration of metformin in wastewater was 14.07 ± 13.16 µg/L, and the per capita consumption was 5.16 ± 2.08 mg/day/inh, ranging from 0.90 to 10.36 ± 4.63 mg/day/inh. The calculated metformin prevalence was found to be 0.52 % ± 0.28 %, and the final estimated DM prevalence was 11.33 % ± 4.99 %, which was nearly consistent with the result of the International Diabetes Federation survey of 9.98 %. The results suggested that metformin might be one of the suitable WBE biomarkers in DM monitoring and WBE strategy could potentially enable the estimation of DM prevalence in most of Chinese cities after reasonable correction of associated parameters.


Subject(s)
Diabetes Mellitus , Metformin , Humans , Cities/epidemiology , Wastewater , Chromatography, Liquid , Prevalence , Tandem Mass Spectrometry , Metformin/analysis , Diabetes Mellitus/epidemiology , China/epidemiology
9.
Neurotox Res ; 42(1): 12, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329647

ABSTRACT

The permeability of the blood-brain barrier (BBB) is increased in Alzheimer's disease (AD). This plays a key role in the instigation and maintenance of chronic inflammation during AD. Experiments using AD models showed that the increased permeability of the BBB was mainly caused by the decreased expression of tight junction-related proteins occludin and claudin-5. In this study, we found that ZNF787 and HDAC1 were upregulated in ß-amyloid (Aß)1-42-incubated endothelial cells, resulting in increased BBB permeability. Conversely, the silencing of ZNF787 and HDAC1 by RNAi led to reduced BBB permeability. The silencing of ZNF787 and HDAC1 enhanced the expression of occludin and claudin-5. Mechanistically, ZNF787 binds to promoter regions for occludin and claudin-5 and functions as a transcriptional regulator. Furthermore, we demonstrate that ZNF787 interacts with HDAC1, and this resulted in the downregulation of the expression of genes encoding tight junction-related proteins to increase in BBB permeability. Taken together, our study identifies critical roles for the interaction between ZNF787 and HDAC1 in regulating BBB permeability and the pathogenesis of AD.


Subject(s)
Alzheimer Disease , Blood-Brain Barrier , Histone Deacetylase 1 , Humans , Alzheimer Disease/genetics , Claudin-5/genetics , Endothelial Cells , Histone Deacetylase 1/genetics , Occludin/genetics , Permeability
10.
J Ethnopharmacol ; 325: 117885, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38331123

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Timosaponin BⅡ (TBⅡ) is one of the main active components of the traditional Chinese medicine Anemarrhena asphodeloides, and it is a steroidal saponin with various pharmacological activities such as anti-oxidation, anti-inflammatory and anti-apoptosis. However, its role in acute ulcerative colitis remains unexplored thus far. AIM OF THE STUDY: This study aims to investigate the protective effect of TBⅡ against dextran sulfate sodium (DSS)-induced ulcerative colitis in mice and elucidate its underlying mechanisms. METHODS: Wild-type (WT) and NLRP3 knockout (NLRP3-/-) mice were applied to evaluate the protective effect of TBⅡ in DSS-induced mice colitis. Pharmacological inhibition of NLRP3 or adenovirus-mediated NLRP3 overexpression in bone marrow-derived macrophages (BMDM) from WT mice and colonic epithelial HCoEpiC cells was used to assess the role of TBⅡ in LPS + ATP-induced cell model. RNA-seq, ELISA, western blots, immunofluorescence staining, and expression analysis by qPCR were performed to examine the alterations of colonic NLRP3 expression in DSS-induced colon tissues and LPS + ATP-induced cells, respectively. RESULTS: In mice with DSS-induced ulcerative colitis, TBⅡ treatment attenuated clinical symptoms, repaired the intestinal mucosal barrier, reduced inflammatory infiltration, and alleviated colonic inflammation. RNA-seq analysis and protein expression levels demonstrated that TBⅡ could prominently inhibit NLRP3 signaling. TBⅡ-mediated NLRP3 inhibition was associated with alleviating intestinal permeability and inflammatory response via the blockage of communication between epithelial cells and macrophages, probably in an NLRP3 inhibition mechanism. However, pharmacological inhibition of NLRP3 by MCC950 or Ad-NLRP3 mediated NLRP3 overexpression significantly impaired the TBⅡ-mediated anti-inflammatory effect. Mechanistically, TBⅡ-mediated NLRP3 inhibition may be partly associated with the suppression of NF-κB, a master pro-inflammatory factor for transcriptional regulation of NLRP3 expression in the priming step. Moreover, co-treatment TBⅡ with NF-κB inhibitor BAY11-7082 partly impaired TBⅡ-mediated NLRP3 inhibition, and consequently affected the IL-1ß mature and secretion. Importantly, TBⅡ-mediated amelioration was not further enhanced in NLPR3-/- mice. CONCLUSION: TBⅡ exerted a prominent protective effect against DSS-induced colitis via regulation of alleviation of intestinal permeability and inflammatory response via the blockage of crosstalk between epithelial cells and macrophages in an NLRP3-mediated inhibitory mechanism. These beneficial effects could make TBⅡ a promising drug for relieving colitis.


Subject(s)
Colitis, Ulcerative , Colitis , Saponins , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Lipopolysaccharides/metabolism , Inflammasomes/metabolism , Colitis/drug therapy , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/adverse effects , Saponins/pharmacology , Saponins/therapeutic use , Adenosine Triphosphate/metabolism , Dextran Sulfate/toxicity , Mice, Inbred C57BL , Colon/metabolism
11.
ACS Appl Mater Interfaces ; 16(2): 2428-2437, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38166369

ABSTRACT

Lithium batteries have been widely used in our daily lives for their high energy density and long-term stability. However, their safety problems are of paramount concern for consumers, which restricts their scale applications. Gel polymer electrolytes (GPEs) compensate for the defects of liquid leakage and lower ionic conductivity of solid electrolytes, which have attracted a lot of attention. Herein, a 3D interconnected highly porous structural gel electrolyte was prepared with alginate dressing as a host material, poly(ethylene oxide) (PEO), and a commercial liquid electrolyte. With rich polar functional groups and (CH2-CH2-O) segments on the polymer matrix, the transportation of Li+ is faster and uniform; thus, the formations of lithium dendrite were significantly inhibited. The cycle stability of symmetrical Li||Li batteries with modified composite electrolytes (SAA) is greatly improved, and the overpotential remains stable after more than 1000 h. Meanwhile, under the same conditions, the cycle performance of batteries with unmodified electrolytes is inferior and overpotentials are nearly 1 V after 100 h. Additionally, the capacity retention of Li||LiFePO4 with SAA is more than 95% after 200 cycles, while those of the others declined sharply. The alginate dressing-based GPEs can greatly enhance the mechanical and thermal stability of PEO-based GPEs, which provides an environmentally friendly avenue for gel electrolytes' applications in lithium batteries.

12.
Mikrochim Acta ; 191(2): 114, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38286853

ABSTRACT

The detection of botulinum neurotoxin A (BoNT/A) endopeptidase activity by pregnancy test paper based on human chorionic gonadotropin (hCG)-functionalized peptide-modified magnetic nanoparticles (MNs) is described for the first time. HCG-functionalized SNAP-25 peptide substrate with hydrolysis recognition sites was optimally designed. HCG can be recognized by pregnancy test strips. BoNT/A light chain (BoNT-LcA) is the central part of the endopeptidase function in holotoxin, which can specifically hydrolyze SNAP-25 peptide to release the hCG-peptide probe, and the hCG-peptide probe released can be quantitatively detected by pregnancy test strips, achieving indirect determination of BoNT/A. By quantifying the T-line color intensity of test strips, the visual detection limit for BoNT-LcA is 12.5 pg/mL, and the linear range of detection for BoNT-LcA and BoNT/A holotoxin was 100 pg/mL to 1 ng/mL and 25 to 250 ng/mL. The ability of the method to quantify BoNT/A was validated in human serum samples. This method shows the potential for sensitive detecting BoNT/A and has prospects for the diagnosis and prognosis of clinical botulism.


Subject(s)
Botulinum Toxins, Type A , Glycosides , Magnetite Nanoparticles , Pregnancy Tests , Triterpenes , Humans , Female , Pregnancy , Endopeptidases , Chorionic Gonadotropin
13.
Environ Toxicol ; 39(5): 2545-2559, 2024 May.
Article in English | MEDLINE | ID: mdl-38189554

ABSTRACT

Programmed cell death plays a pivotal role in maintaining tissue homeostasis, and recent advancements in cell biology have uncovered PANoptosis-a novel paradigm integrating pyroptosis, apoptosis, and necroptosis. This study investigates the implications of PANoptosis in melanoma, a formidable skin cancer known for its metastatic potential and resistance to conventional therapies. Leveraging bulk and single-cell transcriptome analyses, machine learning modeling, and immune correlation assessments, we unveil the molecular intricacies of PANoptosis in melanoma. Single-cell sequencing identifies diverse cell types involved in PANoptosis, while bulk transcriptome analysis reveals key gene sets correlated with PANoptosis. Machine learning algorithms construct a robust prognostic model, demonstrating consistent predictive power across diverse cohorts. Patients with different cohorts can be divided into high-risk and low-risk groups according to this PANoptosis score, with the high-risk group having a significantly worse prognosis. Immune correlation analyses unveil a link between PANoptosis and immunotherapy response, with potential therapeutic implications. Mutation analysis and enrichment studies provide insights into the mutational landscape associated with PANoptosis. Finally, we used cell experiments to verify the expression and function of key gene PARVA, showing that PARVA was highly expressed in melanoma cell lines, and after PARVA is knocked down, cell invasion, migration, and colony formation ability were significantly decreased. This study advances our understanding of PANoptosis in melanoma, offering a comprehensive framework for targeted therapeutic interventions and personalized medicine strategies in combating this aggressive malignancy.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Gene Expression Profiling , Transcriptome , Skin Neoplasms/genetics , Apoptosis
14.
J Appl Toxicol ; 44(4): 641-650, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38056887

ABSTRACT

Helicobacter pylori (HP) infection is the main cause of most cases of gastritis. Quercetin has been shown to have anti-inflammatory, anti-bacterial, and antiviral activities and has been demonstrated to be involved in HP-induced gastric mucosa injury. Moreover, the secretory protein lipocalin-2 (LCN2) was elevated in HP-infected gastric mucosa. Thus, this work aimed to study the interaction between quercetin and LCN2 in HP-triggered gastric injury during gastritis. Human gastric epithelial cell line GES-1 cells were exposed to HP for functional experiments. Cell viability, apoptosis, and inflammation were evaluated by cell counting kit-8, flow cytometry, and enzyme-linked immunosorbent assay, respectively. Levels of genes and proteins were tested using quantitative reverse transcription polymerase chain reaction and western blotting analyses. The interaction between LCN2 and specificity protein 1 (SP1) was validated using chromatin immunoprecipitation assay and dual-luciferase reporter assay. Thereafter, we found quercetin treatment suppressed HP-induced GES-1 cell apoptotic and inflammatory injury and macrophage M1 polarization. LCN2 was highly expressed in HP-infected gastritis patients and HP-infected GES-1 cells, while quercetin reduced LCN2 expression in HP-infected GES-1 cells; moreover, LCN2 knockdown reversed HP-induced GES-1 cell injury and macrophage M1 polarization, and forced expression of LCN2 abolished the protective effects of quercetin on GES-1 cells under HP infection. Mechanistically, SP1 bound to LCN2 promoter and promoted its transcription. Also, SP1 overexpression counteracted the functions of quercetin on HP-stimulated GES-1 cells. In all, quercetin ameliorated HP-induced gastric epithelial cell apoptotic and inflammatory injuries, and macrophage M1 polarization via the SP1/LCN2 axis.


Subject(s)
Gastritis , Helicobacter pylori , Humans , Lipocalin-2/genetics , Lipocalin-2/metabolism , Lipocalin-2/pharmacology , Quercetin/pharmacology , Quercetin/therapeutic use , Quercetin/metabolism , Gastritis/drug therapy , Gastritis/metabolism , Gastritis/microbiology , Epithelial Cells
15.
Sci Total Environ ; 912: 169426, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38128665

ABSTRACT

Dyslipidemia, recognized as a predominant risk factor for atherosclerotic cardiovascular disease (CVD), remains a pressing health concern worldwide, particularly in China with nearly 40 % of the population adversely suffering. Fenofibrate, as one of the most commonly used drugs for dyslipidemia therapy, excreted as the format of fenofibrate-acid, which showed considerable stability in sewage samples and could be detected as WBE-biomarkers to monitor the prevalence of dyslipidemia. In this work, we reported the first research on estimating the prevalence of dyslipidemia by WBE approach. 527 sewage samples from 33 cities in China were extracted by solid phase and analyzed by LC-MS/MS. The detected concentration of fenofibrate acid in sewage was on an average of 120.5 ± 59.9 ng/L, and the reverse-calculated consumption of fenofibrate based on fenofibrate acid was 77.8 ± 25.0 mg/day/1000inh. Detailed analysis unveiled an average prevalence of fenofibrate at 0.056 % ± 0.018 %, and the dyslipidemia prevalence among the population aged over 15 was ultimately estimated to be 37.9 % ± 9.3 % and was in accordance with the China Cardiovascular research result of 40.4 %, which proves that WBE is a substitutable approach of traditional epidemiological investigation methods due to its timeliness and cost-effectiveness. This study demonstrated that estimating dyslipidemia prevalence by WBE with metabolite fenofibrate acid as a biomarker is feasible in most Chinese cities.


Subject(s)
Dyslipidemias , Fenofibrate , Humans , Aged , Fenofibrate/therapeutic use , Sewage , Cities/epidemiology , Chromatography, Liquid , Prevalence , Tandem Mass Spectrometry , China/epidemiology , Dyslipidemias/epidemiology
16.
Rev Esp Enferm Dig ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095216

ABSTRACT

OBJECTIVE: Peroral endoscopic myotomy (POEM), a relatively, minimally invasive endoscopic procedure, is the first-line treatment for achalasia. The aim of this study is to compare procedure-related parameters and clinical outcomes between bypassing and performing prophylactic electrocoagulation of large submucosal vessels during POEM. METHODS: We retrospectively enrolled 112 patients with achalasia who had undergone POEM at our hospital between April 2017 and March 2023. Large submucosal vessels were bypassed to avoid injury during submucosal tunneling in the bypass group; whereas, large submucosal vessels were prophylactically treated by electrocoagulation in prophylactic electrocoagulation group. Procedure-related parameters, Eckardt score, and complications were compared between the two groups. RESULTS: The bypass group showed a significant reduction in the operative time and amount of intraoperative blood loss than prophylactic electrocoagulation group (37.11 ± 9.96 min vs. 58.80 ± 17.90 min, and 1 [interquartile range: 1-2] mL vs. 5 [interquartile range: 3-8] mL; P < 0.001). Eleven (17.5%) and 44 (89.8%) patients in the bypass and prophylactic electrocoagulation groups, respectively, required hemostatic forceps (P < 0.001). Furthermore, lower operative and hospitalization costs were recorded in the bypass group than those in prophylactic electrocoagulation group (P < 0.05). No statistically significant difference was found between the two groups in terms of submucosal tunnel length, myotomy length, clinical efficacy, or complications. CONCLUSIONS: Bypassing large submucosal vessels during POEM can reduce the operative duration and intraoperative blood loss, with no difference in clinical outcomes than the prophylactic electrocoagulation treatment.

17.
J Control Release ; 364: 283-296, 2023 12.
Article in English | MEDLINE | ID: mdl-37898344

ABSTRACT

Inflammatory bowel disease (IBD) is a worldwide public health issue with an increasing number of patients annually. However, there is no curative drug for IBD, and the present medication for IBD generally focuses on suppressing hyperactive immune responses, which can only delay disease progression but inevitably induce off-target side effects, including infections and cancers. Herein, late-model orally administered nanotherapeutic micelles (HADLA) were developed based on a conjugate of hyaluronic acid (HA) and dehydrolithocholic acid (DLA), which was simple to achieve and obtained satisfactory therapeutic efficacy in a murine colitis model with a full safety profile. HADLA is capable of targeting inflammatory colon tissues, restoring intestinal barrier function and reducing intestinal epithelial cell death. Moreover, it modulates the adaptive immune system by inhibiting the activation of pathogenic T helper 17 (Th17) cells, and it exhibits more remarkable effects in preventing colitis than DLA alone. Finally, HADLA exhibits a remarkable ability to modulate dysregulated gut microbiomes by increasing beneficial probiotics and decreasing pathogenic bacteria, such as Turicibacter. Compared with the current systemic or subcutaneous administration of biologics, this study opens new avenues in the oral delivery of immune-modulating nanomedicine and introduces DLA as a new medication for IBD treatment.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Animals , Mice , Micelles , Colitis/chemically induced , Colitis/drug therapy , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Th17 Cells , Disease Models, Animal , Dextran Sulfate
18.
Front Plant Sci ; 14: 1265641, 2023.
Article in English | MEDLINE | ID: mdl-37828930

ABSTRACT

Introduction: The recently established Linderniaceae, separated from the traditionally defined Scrophulariaceae, is a taxonomically complicated family. Although previous phylogenetic studies based on a few short DNA markers have made great contributions to the taxonomy of Linderniaceae, limited sampling and low resolution of the phylogenetic tree have failed to resolve controversies between some generic circumscriptions. The plastid genome exhibits a powerful ability to solve phylogenetic relationships ranging from shallow to deep taxonomic levels. To date, no plastid phylogenomic studies have been carried out in Linderniaceae. Methods: In this study, we newly sequenced 26 plastid genomes of Linderniaceae, including eight genera and 25 species, to explore the phylogenetic relationships and genome evolution of the family through plastid phylogenomic and comparative genomic analyses. Results: The plastid genome size of Linderniaceae ranged from 152,386 bp to 154,402 bp, exhibiting a typical quartile structure. All plastomes encoded 114 unique genes, comprising 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. The inverted repeat regions were more conserved compared with the single-copy regions. A total of 1803 microsatellites and 1909 long sequence repeats were identified, and five hypervariable regions (petN-psbM, rps16-trnQ, rpl32-trnL, rpl32, and ycf1) were screened out. Most protein-coding genes were relatively conserved, with only the ycf2 gene found under positive selection in a few species. Phylogenomic analyses confirmed that Linderniaceae was a distinctive lineage and revealed that the presently circumscribed Vandellia and Torenia were non-monophyletic. Discussion: Comparative analyses showed the Linderniaceae plastomes were highly conservative in terms of structure, gene order, and gene content. Combining morphological and molecular evidence, we supported the newly established Yamazakia separating from Vandellia and the monotypic Picria as a separate genus. These findings provide further evidence to recognize the phylogenetic relationships among Linderniaceae and new insights into the evolution of the plastid genomes.

19.
Biomater Res ; 27(1): 86, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37715230

ABSTRACT

Currently, the clinical treatment of critical bone defects attributed to various causes remains a great challenge, and repairing these defects with synthetic bone substitutes is the most common strategy. In general, tissue engineering materials that mimic the structural, mechanical and biological properties of natural bone have been extensively applied to fill bone defects and promote in situ bone regeneration. Hydrogels with extracellular matrix (ECM)-like properties are common tissue engineering materials, among which methacrylate-based gelatin (GelMA) hydrogels are widely used because of their tunable mechanical properties, excellent photocrosslinking capability and good biocompatibility. Owing to their lack of osteogenic activity, however, GelMA hydrogels are combined with other types of materials with osteogenic activities to improve the osteogenic capability of the current composites. There are three main aspects to consider when enhancing the bone regenerative performance of composite materials: osteoconductivity, vascularization and osteoinduction. Bioceramics, bioglass, biomimetic scaffolds, inorganic ions, bionic periosteum, growth factors and two-dimensional (2D) nanomaterials have been applied in various combinations to achieve enhanced osteogenic and bone regeneration activities. Three-dimensional (3D)-bioprinted scaffolds are a popular research topic in bone tissue engineering (BTE), and printed and customized scaffolds are suitable for restoring large irregular bone defects due to their shape and structural tunability, enhanced mechanical properties, and good biocompatibility. Herein, the recent progress in research on GelMA-based composite hydrogel scaffolds as multifunctional platforms for restoring critical bone defects in plastic or orthopedic clinics is systematically reviewed and summarized. These strategies pave the way for the design of biomimetic bone substitutes for effective bone reconstruction with good biosafety. This review provides novel insights into the development and current trends of research on GelMA-based hydrogels as effective bone tissue engineering (BTE) scaffolds for correcting bone defects, and these contents are summarized and emphasized from various perspectives (osteoconductivity, vascularization, osteoinduction and 3D-bioprinting). In addition, advantages and deficiencies of GelMA-based bone substitutes used for bone regeneration are put forward, and corresponding improvement measures are presented prior to their clinical application in near future (created with BioRender.com).

20.
Light Sci Appl ; 12(1): 213, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653022

ABSTRACT

The physics principle of pulse flight positioning is the main theoretical bottleneck that restricts the spatial resolution of the existing Raman distributed optical fiber sensing scheme. Owing to the pulse width of tens of nanoseconds, the spatial resolution of the existing Raman distributed optical fiber sensing scheme with kilometer-level sensing distance is limited to the meter level, which seriously restricts the development of the optical time-domain reflection system. In this paper, a chaos laser is proposed in the context of the physical principle of the Raman scattering effect, and a novel theory of chaos Raman distributed optical fiber sensing scheme is presented. The scheme reveals the characteristics of chaos Raman scattering light excited by a chaotic signal on the sensing fiber. Further, the chaos time-domain compression demodulation mechanism between the temperature variation information and chaos correlation peak is demonstrated. Then, the position of the temperature variation signal is precisely located using the delay time of the chaos correlation peak combined with the chaos pulse flight time. Based on this novel optical sensing mechanism, an experiment with 10 cm spatial resolution and 1.4 km sensing distance was conducted, and the spatial resolution was found to be independent of the sensing distance. Within the limit of the existing spatial resolution theory, the spatial resolution of the proposed scheme is 50 times higher than that of the traditional scheme. The scheme also provides a new research direction for optical chaos and optical fiber sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...