Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(17): 176401, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37955469

ABSTRACT

The disorder systems host three types of fundamental quantum states, known as the extended, localized, and critical states, of which the critical states remain being much less explored. Here we propose a class of exactly solvable models which host a novel type of exact mobility edges (MEs) separating localized states from robust critical states, and propose experimental realization. Here the robustness refers to the stability against both single-particle perturbation and interactions in the few-body regime. The exactly solvable one-dimensional models are featured by a quasiperiodic mosaic type of both hopping terms and on-site potentials. The analytic results enable us to unambiguously obtain the critical states which otherwise require arduous numerical verification including the careful finite size scalings. The critical states and new MEs are shown to be robust, illustrating a generic mechanism unveiled here that the critical states are protected by zeros of quasiperiodic hopping terms in the thermodynamic limit. Further, we propose a novel experimental scheme to realize the exactly solvable model and the new MEs in an incommensurate Rydberg Raman superarray. This Letter may pave a way to precisely explore the critical states and new ME physics with experimental feasibility.

2.
Anal Chem ; 95(23): 8906-8913, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37265323

ABSTRACT

Developing highly active and sensitive nanozymes for biothiol analysis is of vital significance due to their essential roles in disease diagnosis. Herein, two metal ion-doped carbon dots (M-CDs) with high peroxidase-like activity were designed and prepared for biothiol detection and identification through the colorimetric sensor array technique. The two M-CDs can strongly catalyze the decomposition of H2O2, accompanied by color changes of 3,3',5,5'-tetramethylbenzidine (TMB) from colorless to blue, indicating peroxidase-mimicking activities of M-CDs. Compared with pure carbon dots (CDs), M-CDs exhibited enhanced peroxidase-like activity owing to the synergistic effect between metal ions and CDs. However, due to the strong binding affinity between biothiols and metal ions, the catalytic activities of M-CDs could be inhibited by different biothiols to diverse degrees. Therefore, using TMB as a chromogenic substrate in the presence of H2O2, the developed colorimetric sensor array can form differential fingerprints for the three most important biothiols (i.e., cysteine (Cys), homocysteine (Hcy), and glutathione (GSH)), which can be accurately discriminated through pattern recognition methods (i.e., hierarchical clustering analysis (HCA) and principal component analysis (PCA)) with a detection limit of 5 nM. Moreover, the recognition of a single biothiol with various concentrations and biothiol mixtures was also realized. Furthermore, actual samples such as cells and sera can also be well distinguished by the as-fabricated sensor array, demonstrating its potential in disease diagnosis.


Subject(s)
Carbon , Quantum Dots , Carbon/chemistry , Hydrogen Peroxide , Quantum Dots/chemistry , Cysteine , Metals , Peroxidases , Colorimetry/methods
3.
Molecules ; 28(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37049897

ABSTRACT

When compared to expensive lithium metal, the metal sodium resources on Earth are abundant and evenly distributed. Therefore, low-cost sodium-ion batteries are expected to replace lithium-ion batteries and become the most likely energy storage system for large-scale applications. Among the many anode materials for sodium-ion batteries, hard carbon has obvious advantages and great commercial potential. In this review, the adsorption behavior of sodium ions at the active sites on the surface of hard carbon, the process of entering the graphite lamellar, and their sequence in the discharge process are analyzed. The controversial storage mechanism of sodium ions is discussed, and four storage mechanisms for sodium ions are summarized. Not only is the storage mechanism of sodium ions (in hard carbon) analyzed in depth, but also the relationships between their morphology and structure regulation and between heteroatom doping and electrolyte optimization are further discussed, as well as the electrochemical performance of hard carbon anodes in sodium-ion batteries. It is expected that the sodium-ion batteries with hard carbon anodes will have excellent electrochemical performance, and lower costs will be required for large-scale energy storage systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...