Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 902
Filter
1.
Opt Express ; 32(10): 18366-18378, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858994

ABSTRACT

Mode-pairing quantum key distribution (MP-QKD) holds great promise for the practical implementation of QKD in the near future. It combines the security advantages of measurement device independence while still being capable of breaking the Pirandola-Laurenza-Ottaviani-Banchi bound without the need for highly demanding phase-locking and phase-tracking technologies for deployment. In this work, we explore optimization strategies for MP-QKD in a wavelength-division multiplexing scenario. The simulation results reveal that incorporation of multiple wavelengths not only leads to a direct increase in key rate but also enhances the pairing efficiency by employing our novel pairing strategies among different wavelengths. As a result, our work provides a new avenue for the future application and development of MP-QKD.

2.
Ann Neurol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860520

ABSTRACT

OBJECTIVE: The role of gamma-aminobutyric acid-ergic (GABAergic) neuron impairment in Alzheimer's disease (AD), and if and how transplantation of healthy GABAergic neurons can improve AD, remain unknown. METHODS: Human-derived medial ganglionic eminence progenitors (hiMGEs) differentiated from programmed induced neural precursor cells (hiNPCs) were injected into the dentate gyrus region of the hippocampus (HIP). RESULTS: We showed that grafts migrate to the whole brain and form functional synaptic connections in amyloid precursor protein gene/ presenilin-1 (APP/PS1) chimeric mice. Following transplantation of hiMGEs, behavioral deficits and AD-related pathology were alleviated and defective neurons were repaired. Notably, exosomes secreted from hiMGEs, which are rich in anti-inflammatory miRNA, inhibited astrocyte activation in vitro and in vivo, and the mechanism was related to regulation of CD4+ Th1 cells mediated tumor necrosis factor (TNF) pathway. INTERPRETATION: Taken together, these findings support the hypothesis that hiMGEs transplantation is an alternative treatment for neuronal loss in AD and demonstrate that exosomes with anti-inflammatory activity derived from hiMGEs are important factors for graft survival. ANN NEUROL 2024.

3.
Adv Sci (Weinh) ; : e2309203, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837691

ABSTRACT

Targeted delivery of glutamine metabolism inhibitors holds promise for cholangiocarcinoma therapy, yet effective delivery vehicles remain a challenge. This study reports the development of a biomimetic nanosystem, termed R-CM@MSN@BC, integrating mesoporous organosilicon nanoparticles with reactive oxygen species-responsive diselenide bonds for controlled release of the glutamine metabolism inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES) and the photosensitizer Ce6. Erythrocyte membrane coating, engineered with Arg-Gly-Asp (RGD) peptides, not only enhanced biocompatibility but also improved tumor targeting and tissue penetration. Upon laser irradiation, R-CM@MSN@BC executed both photodynamic and glutamine-metabolic therapies, inducing necroptosis in tumor cells and triggering significant immunogenic cell death. Time-of-flight mass cytometry analysis revealed that R-CM@MSN@BC can remodel the immunosuppressive tumor microenvironment by polarizing M1-type macrophages, reducing infiltration of M2-type and CX3CR1+ macrophages, and decreasing T cell exhaustion, thereby increasing the effectiveness of anti-programmed cell death ligand 1 immunotherapy. This strategy proposed in this study presents a viable and promising approach for the treatment of cholangiocarcinoma.

4.
Int J Psychophysiol ; 202: 112370, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38802049

ABSTRACT

The impact of emotional words on the recognition of body expression and the underlying neurodynamic mechanisms remain poorly understood. This study used a classic supraliminal priming paradigm and event related potential (ERP) to investigate the effect of emotion-label words (experiment 1) and emotional verbs (experiment 2) on the recognition of body expressions. The behavioral results revealed that individuals exhibited a higher accuracy in recognizing happy expressions when presented with a happy-label word condition, in contrast to neutral expressions. Furthermore, it was observed that the accuracy of recognizing happy body expressions was reduced when preceded by angry verb priming, compared to happy and neutral priming conditions. Conversely, the accuracy of recognizing angry body expressions was higher in response to angry verb priming than happy and neutral primings. The ERP results showed that, in the recognition of happy body expressions, the P300 amplitude elicited by angry-label words was more positive, while a congruent verb-expression condition elicited more positive P300 amplitude than an incongruent condition in the left hemisphere and midline. However, in the recognition of angry body expressions, the N400 amplitude elicited by a congruent verb-expression condition was smaller than that elicited by an incongruent condition. These results suggest that both abstract emotion-label words and specific emotional verbs influence the recognition of body expressions. In addition, integrating happy semantic context and body expression might occur at the P300 stage, whereas integrating angry semantic context and body expression might occur at the N400 stage. These findings present novel evidence regarding the criticality of emotional context in the recognition of emotions.

5.
ISA Trans ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38816326

ABSTRACT

The issues of stability and sliding mode control (SMC) for time-varying delay Markov jump systems (MJSs) with structured perturbations constrained by fractional Brownian motion (fBm) are explored. First, constructing a novel Lyapunov-Krasovskii functional (LKF) with exponential terms that contain the double-integral term, the pth moment exponential stability conditions are derived by utilizing the generalized fractional Itoˆ formula and conditional mathematical expectation. Subsequently, by designing the innovative integral sliding mode surface (SMS) associated with time-varying delay and the SMC law, the state trajectories of the dynamic systems can reach the designed SMS within a finite time. Ultimately, the numerical experiment is executed to confirm and ensure the accuracy and reliability of the obtained results.

6.
Mamm Genome ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816661

ABSTRACT

Prostatitis represents a common disease of the male genitourinary system, significantly impacting the physical and mental health of male patients. While numerous studies have suggested a potential link between immune cell activity and prostatitis, the exact causal role of immune cells in prostatitis remains uncertain. This study aims to explore the causal relationship between immune cell characteristics and prostatitis using a bidirectional Mendelian randomization approach. This study utilizes data from the public GWAS database and employs bidirectional Mendelian randomization analysis to investigate the causal relationship between immune cells and prostatitis. The causal relationship between 731 immune cell features and prostatitis was primarily investigated through inverse variance weighting (IVW), complemented by MR-Egger regression, a simple model, the weighted median method, and a weighted model. Ultimately, the results underwent sensitivity analysis to assess the heterogeneity, horizontal pleiotropy, and stability of Single Nucleotide Polymorphisms (SNPs) in immune cells and prostatitis. MR analysis revealed 17 immune cells exhibiting significant causal effects on prostatitis. In contrast, findings from reverse MR indicated a significant causal relationship between prostatitis and 13 immune cells. Our study utilizes bidirectional Mendelian Randomization to establish causal relationships between specific immune cell phenotypes and prostatitis, highlighting the reciprocal influence between immune system behavior and the disease. Our findings suggest targeted therapeutic approaches and the importance of including diverse populations for broader validation and personalized treatment strategies.

7.
Physiol Meas ; 45(5)2024 May 31.
Article in English | MEDLINE | ID: mdl-38722570

ABSTRACT

Objective.Impedance pneumography (IP) has provided static assessments of subjects' breathing patterns in previous studies. Evaluating the feasibility and limitation of ambulatory IP based respiratory monitoring needs further investigation on clinically relevant exercise designs. The aim of this study was to evaluate the capacity of an advanced IP in ambulatory respiratory monitoring, and its predictive value in independent ventilatory capacity quantification during cardiopulmonary exercise testing (CPET).Approach.35 volunteers were examined with the same calibration methodology and CPET exercise protocol comprising phases of rest, unloaded, incremental load, maximum load, recovery and further-recovery. In 3 or 4 deep breaths of calibration stage, thoracic impedance and criterion spirometric volume were simultaneously recorded to produce phase-specific prior calibration coefficients (CCs). The IP measurement during exercise protocol was converted by prior CCs to volume estimation curve and thus calculate minute ventilation (VE) independent from the spirometry approach.Main results.Across all measurements, the relative error of IP-derived VE (VER) and flowrate-derived VE (VEf) was less than 13.8%. In Bland-Altman plots, the aggregate VE estimation bias was statistically insignificant for all 3 phases with pedaling exercise and the discrepancy between VERand VEffell within the 95% limits of agreement (95% LoA) for 34 or all subjects in each of all CPET phases.Significance.This work reinforces the independent use of IP as an accurate and robust alternative to flowmeter for applications in cycle ergometry CPET, which could significantly encourage the clinical use of IP and improve the convenience and comfort of CPET.


Subject(s)
Electric Impedance , Pulmonary Ventilation , Humans , Male , Female , Adult , Pulmonary Ventilation/physiology , Exercise Test , Young Adult , Calibration , Exercise/physiology , Bicycling/physiology , Monitoring, Physiologic/methods
8.
Chemosphere ; 359: 142348, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759803

ABSTRACT

Efficient remediation of soil contaminated by polycyclic aromatic hydrocarbons (PAHs) is challenging. To determine whether soil ecoenzyme stoichiometry influences PAH degradation under biostimulation and bioaugmentation, this study initially characterized soil ecoenzyme stoichiometry via a PAH degradation experiment and subsequently designed a validation experiment to answer this question. The results showed that inoculation of PAH degradation consortia ZY-PHE plus vanillate efficiently degraded phenanthrene with a K value of 0.471 (depending on first-order kinetics), followed by treatment with ZY-PHE and control. Ecoenzyme stoichiometry data revealed that the EEAC:N, vector length and angle increased before day five and decreased during the degradation process. In contrast, EEAN:P decreased and then increased. These results indicated that the rapid PAH degradation period induced more C limitation and organic P mineralization. Correlation analysis indicated that the degradation rate K was negatively correlated with vector length, EEAC:P, and EEAN:P, suggesting that C limitation and relatively less efficient P mineralization could inhibit biodegradation. Therefore, incorporating liable carbon and acid phosphatase or soluble P promoted PAH degradation in soils with ZY-PHE. This study provides novel insights into the relationship between soil ecoenzyme stoichiometry and PAH degradation. It is suggested that soil ecoenzyme stoichiometry be evaluated before designing bioremeiation stragtegies for PAH contanminated soils.


Subject(s)
Biodegradation, Environmental , Polycyclic Aromatic Hydrocarbons , Soil Microbiology , Soil Pollutants , Soil , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/chemistry , Soil Pollutants/metabolism , Soil/chemistry , Phenanthrenes/metabolism , Kinetics
9.
Burns Trauma ; 12: tkae015, 2024.
Article in English | MEDLINE | ID: mdl-38752203

ABSTRACT

Background: Chronic skin wounds are a leading cause of hospital admissions and reduced life expectancy among older people and individuals with diabetes. Delayed wound healing is often attributed to a series of cellular abnormalities. Matrine, a well-studied component found in Sophora flavescens, is recognized for its anti-inflammatory effects. However, its impact on wound healing still remains uncertain. This study aims to explore the potential of matrine in promoting wound healing. Methods: In this study, we utilized gradient extrusion to produce fibroblast-derived exosome-mimetic vesicles as carriers for matrine (MHEM). MHEM were characterized using transmission electron microscopy and dynamic light scattering analysis. The therapeutic effect of MHEM in wound healing was explored in vitro and in vivo. Results: Both matrine and MHEM enhanced the cellular activity as well as the migration of fibroblasts and keratinocytes. The potent anti-inflammatory effect of matrine diluted the inflammatory response in the vicinity of wounds. Furthermore, MHEM worked together to promote angiogenesis and the expression of transforming growth factor ß and collagen I. MHEM contained growth factors of fibroblasts that regulated the functions of fibroblasts, keratinocytes and monocytes, which synergistically promoted wound healing with the anti-inflammatory effect of matrine. Conclusions: MHEM showed enhanced therapeutic efficacy in the inflammatory microenvironment, for new tissue formation and angiogenesis of wound healing.

10.
Front Med (Lausanne) ; 11: 1380750, 2024.
Article in English | MEDLINE | ID: mdl-38799149

ABSTRACT

Background: Elevated preoperative γ-glutamyl transferase (GGT) levels or reduced serum albumin levels have been established as negative prognostic factors for patients with hepatocellular carcinoma (HCC) and various other tumors. Nonetheless, the prognostic significance of the GGT to serum albumin ratio (GAR) in liver transplantation (LT) therapy for HCC is still not well-defined. Methods: A retrospective analysis was conducted on the clinical data of 141 HCC patients who underwent LT at Shulan (Hangzhou) Hospital from June 2017 to November 2020. Using the receiver operating characteristic (ROC) curve, the optimal GAR cutoff value to predict outcomes following LT was assessed. Univariate and multivariate Cox proportional hazards regression analyses were used to identify independent risk factors associated with both overall survival (OS) and recurrence-free survival (RFS). Results: A GAR value of 2.04 was identified as the optimal cutoff for predicting both OS and RFS, with a sensitivity of 63.2% and a specificity of 74.8%. Among these patients, 80 (56.7%) and 90 (63.8%) met the Milan and the University of California San Francisco (UCSF) criteria, respectively. Univariate Cox regression analysis showed that microvascular invasion (MVI), maximum tumor size (>5 cm), total tumor size (>8 cm), liver cirrhosis, TNM stage (III), and GAR (≥2.04) were significantly associated with both postoperative OS and RFS in patients with HCC (all p < 0.05). Multivariate Cox regression analysis indicated that GAR (≥2.04) was independently linked with RFS and OS. Conclusion: Pre-transplant GAR ≥2.04 is an independent correlate of prognosis and survival outcomes after LT for HCC and can be used as a prognostic indicator for both mortality and tumor recurrence following LT.

11.
Pharmaceutics ; 16(5)2024 May 05.
Article in English | MEDLINE | ID: mdl-38794282

ABSTRACT

In situ depot gel is a type of polymeric long-acting injectable (pLAI) drug delivery system; compared to microsphere technology, its preparation process is simpler and more conducive to industrialization. To ensure the chemical stability of peptide ACTY116, we avoided the use of harsh conditions such as high temperatures, high shear mixing, or homogenization; maintaining a water-free and oxygen-free environment was also critical to prevent hydrolysis and oxidation. Molecular dynamics (MDs) simulations were employed to assess the stability mechanism between ACTY116 and the pLAI system. The initial structure of ACTY116 with an alpha helix conformation was constructed using SYBYL-X, and the copolymer PLGA was generated by AMBER 16; results showed that PLGA-based in situ depot gel improved conformational stability of ACTY116 through hydrogen bonds formed between peptide ACTY116 and the components of the pLAI formulation, while PLGA (Poly(DL-lactide-co-glycolide)) also created steric hindrance and shielding effects to prevent conformational changes. As a result, the chemical and conformational stability and in vivo long-acting characteristics of ACTY116 ensure its enhanced efficacy. In summary, we successfully achieved our objective of developing a highly stable peptide-loaded long-acting injectable (LAI) in situ depot gel formulation that is stable for at least 3 months under harsh conditions (40 °C, above body temperature), elucidating the underlying stabilisation mechanism, and the high stability of the ACTY116 pLAI formulation creates favourable conditions for its in vivo pharmacological activity lasting for weeks or even months.

12.
Perfusion ; : 2676591241252720, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712960

ABSTRACT

INTRODUCTION: We aimed to compare the inflammatory cytokines levels of the miniaturized and conventional extracorporeal circuit system. The miniaturized extracorporeal circuit system may be fewer possible inflammation-induced or blood transfusion-related complications. METHODS: We performed a prospective randomized controlled trial (RCT) of 101 patients undergoing congenital heart surgery with CPB (cardiopulmonary bypass, weight ≤15 kg, age ≤2 years). Patients were divided into two different CPB groups randomly by random data form. Blood samples at five different time points and the ultrafiltration fluid before and after CPB were collected in all patients. IL-6, IL-8, and TNF alpha were respectively tested with Abcam ELISA kit. RESULTS: The IL-6 level of blood serum in two groups had no statistical differences between the two groups at all time points. The IL-8 level of blood serum in two groups had no statistical differences right after anesthesia and 5 min after CPB. However, IL-8 level was significantly higher in conventional extracorporeal circuit group than that in miniaturized extracorporeal circuit group at 6 h, 12 h and 24 h after CPB. Blood serum TNF alpha in conventional extracorporeal circuit group was significantly higher at 6 h after CPB than that in miniaturized extracorporeal circuit group. No statistical differences in TNF alpha were found between two groups right after anesthesia and at 5 min after CPB, 12 h and 24 h after CPB. In ultrafiltration fluid, no statistical differences were found in IL-6, IL-8 nor TNF alpha between two groups in all time. No statistical differences were found in ICU (intensive care unit) stay and mechanical ventilation time between the two groups. The blood transfusion rate was significantly lower in miniaturized extracorporeal circuit group. CONCLUSION: Implementing the miniaturized extracorporeal circuit system could decrease the inflammatory cytokines at a certain level. The blood transfusion rate is significantly lower in miniaturized extracorporeal circuit group This indicates the miniaturized extracorporeal circuit system might be a safer CPB strategy with fewer possible inflammation-induced or blood transfusion-related complications.

13.
ACS Catal ; 14(9): 7157-7165, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38721382

ABSTRACT

With heterogeneous catalysts, chemical promotion takes place at their surfaces. Even in the case of single-atom alloys, where small quantities of a reactive metal are dispersed within the main host, it is assumed that both elements are exposed and available to bond with the reactants. Here, we show, on the basis of in situ X-ray absorption spectroscopy data, that in alloy catalysts made from Pt highly diluted in Cu the Pt atoms are located at the inner interface between the metal nanoparticles and the silica support instead. Kinetic experiments indicated that these catalysts still display better selectivity for the hydrogenation of unsaturated aldehydes to unsaturated alcohols than the pure metals. Density functional theory calculations corroborated the stability of Pt at the metal-support interface and explained the catalytic performance as being due to a remote lowering of the activation barrier for the dissociation of H2 at Cu sites by the internal Pt atoms.

14.
Int J Ophthalmol ; 17(3): 485-490, 2024.
Article in English | MEDLINE | ID: mdl-38721517

ABSTRACT

AIM: To investigate the long-term changes of corneal densitometry (CD) and its contributing elements after small incision lenticule extraction (SMILE). METHODS: Totally 31 eyes of 31 patients with mean spherical equivalent of -6.46±1.50 D and mean age 28.23±7.38y were enrolled. Full-scale examinations were conducted on all patients preoperatively and during follow-up. Visual acuity, manifest refraction, axial length, corneal thickness, corneal higher-order aberrations, and CD were evaluated. RESULTS: All surgeries were completed successfully without complications or adverse events. Ten-year safety index was 1.17±0.20 and efficacy 1.04±0.28. CD value of 0-6 mm zones in central layer was statistically significantly lower 10y postoperatively, compared with preoperative values (0-2 mmΔ=-1.62, 2-6 mmΔ=-1.24, P<0.01). There were no correlations between CD values and factors evaluated. CONCLUSION: SMILE is a safe and efficient procedure for myopia on a long-term basis. CD values get lower 10y postoperatively, whose mechanism is to be further discussed.

15.
J Inflamm Res ; 17: 3159-3171, 2024.
Article in English | MEDLINE | ID: mdl-38774448

ABSTRACT

Background: Sepsis is a life-threatening clinical syndrome caused by dysregulated host response to infection. The mechanism underlying sepsis-induced immune dysfunction remains poorly understood. Natural killer T (NKT) cells are cytotoxic lymphocytes that bridge the innate and adaptive immune systems, the role of NKT cells in sepsis is not entirely understood, and NKT cell cluster differences in sepsis remain unexplored. Methods: Mendelian randomization (MR) analyses were first conducted to investigate the causal relationship between side scatter area (SSC-A) on NKT cells and 28-day mortality of septic patients. A prospective and observational study was conducted to validate the relationship between the percentage of NKT cells and 28-day mortality of sepsis. Then, the single-cell RNA sequencing (scRNA-seq) data of peripheral blood mononuclear cells (PBMCs) from healthy controls and septic patients were profiled. Results: MR analyses first revealed the protective roles of NKT cells in the 28-day mortality of sepsis. Then, 115 septic patients were enrolled. NKT percentage was significantly higher in survivors (n = 84) compared to non-survivors (n = 31) (%, 5.00 ± 3.46 vs 2.18 ± 1.93, P < 0.0001). Patients with lower levels of NKT cells exhibited a significantly increased risk of 28-day mortality. According to scRNA-seq analysis, NKT cell clusters exhibited multiple distinctive characteristics, including a distinguishing cluster defined as FOS+NKT cells, which showed a significant decrease in sepsis. Pseudo-time analysis showed that FOS+NKT cells were characterized by upregulated expression of crucial functional genes such as GZMA and CCL4. CellChat revealed that interactions between FOS+NKT cells and adaptive immune cells including B cells and T cells were decreased in sepsis compared to healthy controls. Conclusion: Our findings indicate that NKT cells may protect against sepsis, and their percentage can predict 28-day mortality. Additionally, we discovered a unique FOS+NKT subtype crucial in sepsis immune response, offering novel insights into its immunopathogenesis.

16.
J Inflamm Res ; 17: 3187-3200, 2024.
Article in English | MEDLINE | ID: mdl-38779429

ABSTRACT

Background: Natural killer (NK) cells are key regulators of immune defense in sepsis-induced acute respiratory distress syndrome (ARDS), yet the characteristics of NK cell clusters in ARDS remain poorly understood. Methods: A prospective and observational study enrolled septic patients with ARDS or not was conducted to determine the percentage of NK cells via flow cytometry. The transcriptomes of peripheral blood mononuclear cells (PBMCs) from healthy controls, patients with sepsis only, and patients with sepsis-induced ARDS were profiled. Vitro experiments were performed to confirm the mechanism mediating MX1+NK cell infiltration. Results: A total of 115 septic patients were analyzed, among whom 63 patients developed ARDS and 52 patients did not. Decreased NK percentages were found in sepsis with ARDS patients (%, 7.46±4.40 vs 11.65±6.88, P=0.0001) compared with sepsis-only patients. A lower percentage of NK cells showed a significant increase in 28-day mortality. Single-cell sequencing analysis revealed distinct characteristics of NK cells in sepsis-induced ARDS, notably the identification of a unique cluster defined as MX1+NK cells. Flow cytometry analysis showed an elevated percentage of MX1+NK cells specifically in individuals with sepsis-induced ARDS, compared with patients with sepsis only. Pseudo-time analysis showed that MX1+NK cells were characterized by upregulation of type I interferon-induced genes and other pro-inflammatory genes. MX1+NK cells can respond to type I interferons and secrete type I interferons themselves. Ligand-receptor interaction analysis also revealed extensive interaction between MX1+NK cells and T/B cells, leading to an uncontrolled inflammatory response in ARDS. Conclusion: MX1+NK cells can respond to type I interferons and secrete type I interferons themselves, promoting the development of sepsis-induced ARDS. Interfering with the infiltration of MX1+NK cells could be a therapeutic approach for this disease. Due to the limited sample size, a larger sample size was needed for further exploration.

17.
Nat Commun ; 15(1): 4368, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778090

ABSTRACT

Two-dimensional (2D) AMX2 compounds are a family of mixed ionic and electronic conductors (where A is a monovalent metal ion, M is a trivalent metal, and X is a chalcogen) that offer a fascinating platform to explore intrinsic coupled ionic-electronic properties. However, the synthesis of 2D AMX2 compounds remains challenging due to their multielement characteristics and various by-products. Here, we report a separated-precursor-supply chemical vapor deposition strategy to manipulate the chemical reactions and evaporation of precursors, facilitating the successful fabrication of 20 types of 2D AMX2 flakes. Notably, a 10.4 nm-thick AgCrS2 flake shows superionic behavior at room temperature, with an ionic conductivity of 192.8 mS/cm. Room temperature ferroelectricity and reconfigurable positive/negative photovoltaic currents have been observed in CuScS2 flakes. This study not only provides an effective approach for the synthesis of multielement 2D materials with unique properties, but also lays the foundation for the exploration of 2D AMX2 compounds in electronic, optoelectronic, and neuromorphic devices.

18.
Precis Clin Med ; 7(1): pbae005, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38558949

ABSTRACT

Background: Myopia is a leading cause of visual impairment in Asia and worldwide. However, accurately predicting the progression of myopia and the high risk of myopia remains a challenge. This study aims to develop a predictive model for the development of myopia. Methods: We first retrospectively gathered 612 530 medical records from five independent cohorts, encompassing 227 543 patients ranging from infants to young adults. Subsequently, we developed a multivariate linear regression algorithm model to predict the progression of myopia and the risk of high myopia. Result: The model to predict the progression of myopia achieved an R2 value of 0.964 vs a mean absolute error (MAE) of 0.119D [95% confidence interval (CI): 0.119, 1.146] in the internal validation set. It demonstrated strong generalizability, maintaining consistent performance across external validation sets: R2 = 0.950 vs MAE = 0.119D (95% CI: 0.119, 1.136) in validation study 1, R2 = 0.950 vs MAE = 0.121D (95% CI: 0.121, 1.144) in validation study 2, and R2 = 0.806 vs MAE = -0.066D (95% CI: -0.066, 0.569) in the Shanghai Children Myopia Study. In the Beijing Children Eye Study, the model achieved an R2 of 0.749 vs a MAE of 0.178D (95% CI: 0.178, 1.557). The model to predict the risk of high myopia achieved an area under the curve (AUC) of 0.99 in the internal validation set and consistently high area under the curve values of 0.99, 0.99, 0.96 and 0.99 in the respective external validation sets. Conclusion: Our study demonstrates accurate prediction of myopia progression and risk of high myopia providing valuable insights for tailoring strategies to personalize and optimize the clinical management of myopia in children.

19.
Article in English | MEDLINE | ID: mdl-38581330

ABSTRACT

Objective: Metabolism, a basic need and biochemical process for cell survival and proliferation, is closely connected with the pathogenesis and progression of prostate cancer. Methods: A four-gene signature construct that includes CKM (CKM), CD38, Enoyl Coenzyme A(EHHADH), and Arginase 2(ARG2) was created by bioinformatics. Finally, hub genes were validated by IHC and in vitro experiments. Results: The results showed the AUCs of the logistic regression and neural networks diagnostic model for the diagnosis of two subtypes were 0.920 and 0.936, respectively. The risk score demonstrated by univariable and multivariable Cox analysis is an independent predictive component of the prognostic signature for DFS. According to immunohistochemical analyses, ARG2 and CD38 expression levels were considerably under-expressed, but CKM and EHHADH expression levels were significantly overexpressed. Furthermore, The expression of ARG2 was significantly down-regulated in the late Gleason score. Finally, we found that ARG2 is lowly expressed in prostate cancer cells. Furthermore, based on the effect of ARG2 on the malignant phenotype of PCa in vitro, we also found that ARG2 may be a tumor suppressor that plays an important role in inhibiting proliferation, migration, and invasion. Conclusions: These findings suggest that ARG2 has been tentatively identified as a new target for research into how PCa develops in metabolism and for the development of innovative targeted treatments.

20.
World J Gastroenterol ; 30(11): 1588-1608, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38617450

ABSTRACT

BACKGROUND: Acute liver failure (ALF) has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis. The silent information regulator sirtuin 1 (SIRT1)-mediated deacetylation affects multiple biological processes, including cellular senescence, apoptosis, sugar and lipid metabolism, oxidative stress, and inflammation. AIM: To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms. METHODS: This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) testing. C57BL/6 mice were also intraperitoneally pretreated with SIRT1, p53, or glutathione peroxidase 4 (GPX4) inducers and inhibitors and injected with lipopolysaccharide (LPS)/D-galactosamine (D-GalN) to induce ALF. Gasdermin D (GSDMD)-/- mice were used as an experimental group. Histological changes in liver tissue were monitored by hematoxylin and eosin staining. ALT, AST, glutathione, reactive oxygen species, and iron levels were measured using commercial kits. Ferroptosis- and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction. SIRT1, p53, and GSDMD were assessed by immunofluorescence analysis. RESULTS: Serum AST and ALT levels were elevated in patients with ALF. SIRT1, solute carrier family 7a member 11 (SLC7A11), and GPX4 protein expression was decreased and acetylated p5, p53, GSDMD, and acyl-CoA synthetase long-chain family member 4 (ACSL4) protein levels were elevated in human ALF liver tissue. In the p53 and ferroptosis inhibitor-treated and GSDMD-/- groups, serum interleukin (IL)-1ß, tumour necrosis factor alpha, IL-6, IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated. In mice with GSDMD knockout, p53 was reduced, GPX4 was increased, and ferroptotic events (depletion of SLC7A11, elevation of ACSL4, and iron accumulation) were detected. In vitro, knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels, the cytostatic rate, and GSDMD expression, restoring SLC7A11 depletion. Moreover, SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group, accompanied by reduced p53, GSDMD, and ACSL4, and increased SLC7A11 and GPX4. Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalN-induced in vitro and in vivo models. CONCLUSION: SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.


Subject(s)
Liver Failure, Acute , Sirtuin 1 , Animals , Humans , Mice , Gasdermins , Iron , Lipopolysaccharides , Liver Failure, Acute/chemically induced , Mice, Inbred C57BL , Phospholipid Hydroperoxide Glutathione Peroxidase , Sirtuin 1/genetics , Tumor Suppressor Protein p53
SELECTION OF CITATIONS
SEARCH DETAIL
...