Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cardiovasc Disord ; 24(1): 19, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172743

ABSTRACT

BACKGROUND: The key complication of myocardial infarction therapy is myocardial ischemia/reperfusion injury (MI/RI), and there is no effective treatment. The present study elucidates the mechanism of action of lncRNA KCNQ1OT1 in alleviating MI/RI and provides new perspectives and therapeutic targets for cardiac injury-related diseases. METHODS: An ischemia/reperfusion (I/R) injury model of human adult cardiac myocytes (HACMs) was constructed, and the expression of KCNQ1OT1 and miR-377-3p was determined by RT‒qPCR. The levels of related proteins were detected by western blot analysis. Cell proliferation was detected by a CCK-8 assay, and cell apoptosis and ROS content were determined by flow cytometry. SOD and MDA expression as well as Fe2+ changes were detected by related analysis kits. The target binding relationships between lncRNA KCNQ1OT1 and miR-377-3p as well as between miR-377-3p and heme oxygenase 1 (HMOX1) were verified by a dual-luciferase reporter gene assay. RESULTS: Myocardial ischemia‒reperfusion caused oxidative stress in HACMs, resulting in elevated ROS levels, increased Fe2+ levels, decreased cell viability, and increased LDH release (a marker of myocardial injury), and apoptosis. KCNQ1OT1 and HMOX1 were upregulated in I/R-induced myocardial injury, but the level of miR-377-3p was decreased. A dual-luciferase reporter gene assay indicated that lncRNA KCNQ1OT1 targets miR-377-3p and that miR-377-3p targets HMOX1. Inhibition of HMOX1 alleviated miR-377-3p downregulation-induced myocardial injury. Furthermore, lncRNA KCNQ1OT1 promoted the level of HMOX1 by binding to miR-377-3p and aggravated myocardial injury. CONCLUSION: LncRNA KCNQ1OT1 aggravates ischemia‒reperfusion-induced cardiac injury via miR-377-3P/HMOX1.


Subject(s)
MicroRNAs , Myocardial Infarction , Myocardial Reperfusion Injury , RNA, Long Noncoding , Humans , Apoptosis , Heme Oxygenase-1/metabolism , Luciferases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/genetics , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
2.
J Healthc Eng ; 2021: 2771712, 2021.
Article in English | MEDLINE | ID: mdl-34956563

ABSTRACT

Intervertebral disc degeneration (IDD) is widely accepted as a cause of low back pain and related degenerative musculoskeletal disorders. Nucleus pulposus (NP) cell loss is closely related to IDD progression. Thus, investigating the specifically targeted therapeutic agents against NP cell loss depends on understanding the molecular mechanisms. In this study, human NP cells were treated with hydrogen peroxide (H2O2). Cell viability was assessed by using the Cell Counting Kit-8 (CCK-8) kit. The expression of circRNA arginine-glutamic acid dipeptide repeats (hsa_circ_RERE) and miR-299-5p was analyzed by real-time quantitative PCR. Western blot analysis was used to assess the protein expression levels. The autophagy levels in NP cells were detected by using an electronic microscope, LC3B protein immunofluorescence, and western blot. The apoptosis levels of NP cells were detected by flow cytometry and western blot. Dual-luciferase reporter assay analyzed the miR-299-5p bound to circ_RERE and galectin-3. Our results revealed that H2O2 significantly inhibited the viability of NP cells, promoted apoptosis and autophagy, and upregulated galectin-3 expression. miR-299-5p was reduced in IDD and H2O2-induced NP cells. The overexpression of miR-299-5p promoted cell viability and attenuated apoptosis and autophagy under H2O2 treatment. Besides, circ_RERE was upregulated in IDD and H2O2-induced NP cells. However, knockdown of circ_RERE reversed the effects of miR-299-5p overexpression on cell viability, apoptosis, and autophagy in NP cells. We propose that circ_RERE promotes the H2O2-induced apoptosis and autophagy of NP cells through the miR-299-5p/galectin-3 axis and may provide a new target for the clinical treatment of IDD.


Subject(s)
Galectin 3 , MicroRNAs , Nucleus Pulposus , RNA, Circular , Apoptosis , Autophagy , Carrier Proteins/metabolism , Galectin 3/metabolism , Humans , Hydrogen Peroxide/pharmacology , MicroRNAs/genetics , Nucleus Pulposus/cytology , Oxidative Stress , RNA, Circular/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...