Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3832-3844, 2024 May.
Article in English | MEDLINE | ID: mdl-38153824

ABSTRACT

Ground Penetrating Radar (GPR) has been widely used in pipeline detection and underground diagnosis. In practical applications, the characteristics of the GPR data of the detected area and the likely underground anomalous structures could be rarely acknowledged before fully analyzing the obtained GPR data, causing challenges to identify the underground structures or anomalies automatically. In this article, a GPR B-scan image diagnosis method based on learning in the model space is proposed. The idea of learning in the model space is to use models fitted on parts of data as more stable and parsimonious representations of the data. For the GPR image, 2-Direction Echo State Network (2D-ESN) is proposed to fit the image segments through the next item prediction. By building the connections between the points on the image in both the horizontal and vertical directions, the 2D-ESN regards the GPR image segment as a whole and could effectively capture the dynamic characteristics of the GPR image. And then, semi-supervised and supervised learning methods could be further implemented on the 2D-ESN models for underground diagnosis. Experiments on real-world datasets are conducted, and the results demonstrate the effectiveness of the proposed model.

2.
Article in English | MEDLINE | ID: mdl-35939477

ABSTRACT

As data sources become ever more numerous with increased feature dimensionality, feature selection for multiview data has become an important technique in machine learning. Semi-supervised multiview feature selection (SMFS) focuses on the problem of how to obtain a discriminative feature subset from heterogeneous feature spaces in the case of abundant unlabeled data with little labeled data. Most existing methods suffer from unreliable similarity graph structure across different views since they separate the graph construction from feature selection and use the fixed graphs that are susceptible to noisy features. Furthermore, they directly concatenate multiple feature projections for feature selection, neglecting the contribution diversity among projections. To alleviate these problems, we present an SMFS to simultaneously select informative features and learn a unified graph through the data fusion from aspects of feature projection and similarity graph. Specifically, SMFS adaptively weights different feature projections and flexibly fuses them to form a joint weighted projection, preserving the complementarity and consensus of the original views. Moreover, an implicit graph fusion is devised to dynamically learn a compatible graph across views according to the similarity structure in the learned projection subspace, where the undesirable effects of noisy features are largely alleviated. A convergent method is derived to iteratively optimize SMFS. Experiments on various datasets validate the effectiveness and superiority of SMFS over state-of-the-art methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...