Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Cell Fact ; 23(1): 194, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970033

ABSTRACT

BACKGROUND: Biotransformation of CO2 into high-value-added carbon-based products is a promising process for reducing greenhouse gas emissions. To realize the green transformation of CO2, we use fatty acids as carbon source to drive CO2 fixation to produce succinate through a portion of the 3-hydroxypropionate (3HP) cycle in Cupriavidus necator H16. RESULTS: This work can achieve the production of a single succinate molecule from one acetyl-CoA molecule and two CO2 molecules. It was verified using an isotope labeling experiment utilizing NaH13CO3. This implies that 50% of the carbon atoms present in succinate are derived from CO2, resulting in a twofold increase in efficiency compared to prior methods of succinate biosynthesis that relied on the carboxylation of phosphoenolpyruvate or pyruvate. Meanwhile, using fatty acid as a carbon source has a higher theoretical yield than other feedstocks and also avoids carbon loss during acetyl-CoA and succinate production. To further optimize succinate production, different approaches including the optimization of ATP and NADPH supply, optimization of metabolic burden, and optimization of carbon sources were used. The resulting strain was capable of producing succinate to a level of 3.6 g/L, an increase of 159% from the starting strain. CONCLUSIONS: This investigation established a new method for the production of succinate by the implementation of two CO2 fixation reactions and demonstrated the feasibility of ATP, NADPH, and metabolic burden regulation strategies in biological carbon fixation.


Subject(s)
Carbon Dioxide , Cupriavidus necator , Fatty Acids , Succinic Acid , Carbon Dioxide/metabolism , Cupriavidus necator/metabolism , Fatty Acids/metabolism , Succinic Acid/metabolism , Acetyl Coenzyme A/metabolism , NADP/metabolism
2.
PeerJ ; 11: e15660, 2023.
Article in English | MEDLINE | ID: mdl-37456884

ABSTRACT

Sodium dodecyl sulfate (SDS) is an anionic surfactant, which is widely used in various fields in human life. However, SDS discharged into the water environment has a certain impact on aquatic organisms. In this study, planarian Dugesia japonica (D. japonica) was used to identify the toxic effects of SDS. A series of SDS solutions with different concentrations were used to treat planarians for the acute toxicity test , and the results showed that the semi-lethal concentration (LC50) of SDS to D. japonica at 24 h, 48 h, 72 h, and 96 h were 4.29 mg/L, 3.76 mg/L, 3.45 mg/L, and 3.20 mg/L respectively. After the planarians were exposed to 0.5 mg/L and 1.0 mg/L SDS solutions for 1, 3, and 5 days, the activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) content were measured to detect the oxidative stress and lipid peroxidation in planarians. Random amplified polymorphic DNA (RAPD) analysis was performed to detect the genotoxicity caused by SDS to planarians. The results showed that the activities of SOD, CAT, and MDA content increased after the treatment, indicating that SDS induced oxidative stress in planarians. RAPD analysis showed that the genomic template stability (GTS) values of planarians treated by 0.5 mg/L and 1.0 mg/L SDS for 1, 3, and 5 days were 67.86%, 64.29%, 58.93%, and 64.29%, 60.71%, 48.21%, respectively. GTS values decreased with the increasing of SDS concentration and exposure time, indicating that SDS had genotoxicity to planarians in a time and dose-related manner. Fluorescent quantitative PCR (qPCR) was used to investigate the effects of SDS on gene expression of planarians. After the planarians were exposed to 1.0 mg/L SDS solution for 1, 3, and 5 days, the expression of caspase3 was upregulated, and that of piwiA, piwiB, PCNA, cyclinB, and RAD51 were downregulated. These results suggested that SDS might induce apoptosis, affect cell proliferation, differentiation, and DNA repair ability of planarian cells and cause toxic effects on planarian D. japonica.


Subject(s)
Planarians , Animals , Antioxidants/metabolism , Random Amplified Polymorphic DNA Technique , Sodium Dodecyl Sulfate/toxicity , Superoxide Dismutase/metabolism
3.
Chemistry ; 23(57): 14143-14148, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-28833650

ABSTRACT

A series of anion-functionalized pillararenes were prepared and applied in the capture of SO2 through incorporating an anion with different basicity into pillararenes. A high SO2 absorption capacity up to 15.9 mmol g-1 and excellent reversibility were achieved by tuning the basicity of the anion and the size of the cavity. Spectroscopic investigations and DFT calculations indicated that high SO2 capacity originated from multiple sites interaction between SO2 and the anion, where SO2 chemical absorption was significant strengthened by the cavity, because the anion was confined in the window of the cavity and the window was electron-deficient. Interestingly, a phase transition occurred during absorption and desorption process. The method proposed in this work provided an efficient strategy for improving gas absorption through a simple functionalization of the supermolecule, which was also very important for some other fields such as polymers and materials.

4.
Angew Chem Int Ed Engl ; 55(46): 14364-14368, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27739226

ABSTRACT

A novel method for highly efficient nitric oxide absorption by azole-based ionic liquid was reported. The NO absorption capacity reached up to 4.52 mol per mol ionic liquid and is significant higher than the capacity other traditional absorbents. Moreover, the absorption of NO by this ionic liquid was reversible. Through a combination of experimental absorption, quantum chemical calculation, NMR and FT-IR spectroscopic investigation, the results indicated that such high capacity originated from multiple-site interactions between NO and the anion through the formation of NONOate with the chemical formula R1 R2 N-(NO- )-N=O, where R1 and R2 are alkyl groups. We believe that this highly efficient and reversible NO absorption by an azole-based ionic liquid paves a new way for gas capture and utilization.

5.
Chem Commun (Camb) ; 52(50): 7830-3, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27241057

ABSTRACT

A strategy to achieve the efficient synthesis of alkylidene carbonates from CO2 at atmospheric pressure by tuning the basicity of ionic liquids was developed. Excellent yields were obtained due to basic ionic liquids' dual roles both as absorbents and as activators. The reaction mechanism was investigated through a combination of NMR spectroscopy, controlled experiments and quantum calculations, indicating the importance of a moderate basicity.

6.
Chemistry ; 21(14): 5632-9, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25688867

ABSTRACT

A new approach has been developed to improve SO2 sorption by cyano-containing ionic liquids (ILs) through tuning the basicity of ILs and cyano-sulfur interaction. Several kinds of cyano-containing ILs with different basicity were designed, prepared, and used for SO2 capture. The interaction between these cyano-containing ILs and SO2 was investigated by FTIR and NMR methods. Spectroscopic investigations and quantum chemical calculations showed that dramatic effects on SO2 capacity originate from the basicity of the ILs and enhanced cyano-sulfur interaction. Furthermore, the captured SO2 was easy to release by heating or bubbling N2 through the ILs. This efficient and reversible process, achieved by tuning the basicity of ILs, is an excellent alternative to current technologies for SO2 capture.

SELECTION OF CITATIONS
SEARCH DETAIL
...