Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
J Control Release ; 371: 313-323, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38823585

ABSTRACT

Poly(ethylene glycol) (PEG) is widely utilized as a hydrophilic coating to extend the circulation time and improve the tumor accumulation of polymeric micelles. Nonetheless, PEGylated micelles often activate complement proteins, leading to accelerated blood clearance and negatively impacting drug efficacy and safety. Here, we have crafted amphiphilic block copolymers that merge hydrophilic sulfoxide-containing polymers (psulfoxides) with the hydrophobic drug 7-ethyl-10-hydroxylcamptothecin (SN38) into drug-conjugate micelles. Our findings show that the specific variant, PMSEA-PSN38 micelles, remarkably reduce protein fouling, prolong blood circulation, and improve intratumoral accumulation, culminating in significantly increased anti-cancer efficacy compared with PEG-PSN38 counterpart. Additionally, PMSEA-PSN38 micelles effectively inhibit complement activation, mitigate leukocyte uptake, and attenuate hyperactivation of inflammatory cells, diminishing their ability to stimulate tumor metastasis and cause inflammation. As a result, PMSEA-PSN38 micelles show exceptional promise in the realm of anti-metastasis and significantly abate SN38-induced intestinal toxicity. This study underscores the promising role of psulfoxides as viable PEG substitutes in the design of polymeric micelles for efficacious anti-cancer drug delivery.

2.
Wei Sheng Yan Jiu ; 53(3): 396-402, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38839594

ABSTRACT

OBJECTIVE: To construct the complementary food texture in infants and young children aged 6 to 23 months, and observe the acceptability of complementary food of different months old infants. METHODS: Based on the domestic and foreign guidelines, consensus and literatures on complementary feeding, and combined with the characteristics of children's growth and development in China. The complementary food texture index of 6-23 months old infants and young children was constructed. One province was selected in the south and north respectively, one city and one rural area was selected as the observation point in each province. The stratified random sampling principle was adopted in each observation point, 240 infants and young children were selected for the acceptability study. According to the food type, 12 common foods were selected to make the complementary food toolkit. The parents were instructed to make complementary food at home according to the corresponding month age, observe and record the acceptability of single/mixed complementary food feeding. RESULTS: The complementary food texture index of 6 months, 7-8 months, 9-11 months, 12-17 months, 18-23 months was constructed. Caregivers could make complementary food at the corresponding month age according to the established complementary food texture index. The acceptability of single complementary food for infants and young children aged 6-23 months was 98.3%, 98.7%, 99.8%, 96.9% and 97.5%, respectively. The acceptability of mixed complementary food for children aged 7-23 months was 98.3%, 99.6%, 93.8% and 97.5%, respectively. CONCLUSION: The complementary food texture index of different month age can be made at home, and the acceptability of different texture is good.


Subject(s)
Infant Food , Infant Nutritional Physiological Phenomena , Infant , Humans , Male , Female , China , Food Preferences
3.
Water Res ; 259: 121841, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38820734

ABSTRACT

The toxicity of microplastics (MPs) on freshwater plants has been widely studied, yet the influence of aged MPs remains largely unexplored. Herein, we investigated the influence of polyvinyl chloride (PVC) MPs, both before and after aging, at different environmentally relevant concentrations on Chlorella pyrenoidosa, a freshwater microalgae species widely recognized as a valuable biomass resource. During a 96-h period, both virgin and aged MPs hindered the growth of C. pyrenoidosa. The maximum growth inhibition rates were 32.40 % for virgin PVC at 250 mg/L and 44.72 % for aged PVC at 100 mg/L, respectively. Microalgae intracellular materials, i.e., protein and carbohydrate contents, consistently decreased after MP exposure, with more pronounced inhibition observed with aged PVC. Meanwhile, the MP aging significantly promoted the nitrogen uptake of C. pyrenoidosa, i.e., 1693.45 ± 42.29 mg/L (p < 0.01), contributing to the production of humic acid-like substances. Additionally, aged PVC induced lower chlorophyll a and Fv/Fm when compared to virgin PVC, suggesting a more serious inhibition of the photosynthesis process of microalgae. The toxicity of MPs to C. pyrenoidosa was strongly associated with intercellular oxidative stress levels. The results indicate that MP aging exacerbates the damage to photosynthetic performance and bioenergy production in microalgae, providing critical insights into the toxicity analysis of micro(nano)plastics on freshwater plants.

4.
Water Res ; 258: 121804, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38781621

ABSTRACT

It has recently been discovered that HFPO-TA (a processing aid in the production of fluoropolymers) has high levels of bioaccumulation and biotoxicity. Hydrated electrons (eaq-) have been proposed to be potent nucleophiles that may decompose PFAS. Unlike previous studies in which the generation of eaq- was often restricted to anaerobic or highly alkaline environments, in this study, we applied the UV/SO32-/I- process under mild conditions of neutrality, low source chemical demand, and open-air, which achieved effective degradation (81.92 %, 0.834 h-1) and defluorination (48.99 %, 0.312 h-1) of HFPO-TA. With I- as the primary source of eaq-, SO32- acting as an I- regenerator and oxidizing substances scavenger, UV/SO32-/I- outperformed others under mild circumstances. The eaq- were identified as the main active species by quenching experiments and electron paramagnetic resonance (EPR). During degradation, the first site attacked by eaq- was the ether bond (C6-O7), followed by the generation of HFPO-DA, TFA, acetic and formic acid. Degradation studies of other HFPOs have shown that the defluorination of HFPOs was accompanied by a clear chain-length correlation. At last, toxicological experiments confirmed the safety of the process. This study updated our understanding of the degradation of newly PFASs and the application of eaq- mediated photoreductive approaches under mild conditions.

5.
Environ Sci Technol ; 58(23): 10368-10377, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38814143

ABSTRACT

The insect Tenebrio molitor exhibits ultrafast efficiency in biodegrading polystyrene (PS). However, the generation and fate of nanoplastics (NPs) in the intestine during plastic biodegradation remain unknown. In this study, we investigated the biodegradation of PS microplastics (MPs) mediated by T. molitor larvae over a 4-week period and confirmed biodegradation by analyzing Δδ13C in the PS before and after biotreatment (-28.37‰ versus -24.88‰) as an effective tool. The ·OH radicals, primarily contributed by gut microbiota, and H2O2, primarily produced by the host, both increased after MP digestion. The size distribution of residual MP particles in excrements fluctuated within the micrometer ranges. PS NPs were detected in the intestine but not in the excrements. At the end of Weeks 1, 2, 3, and 4, the concentrations of PS NPs in gut tissues were 3.778, 2.505, 2.087, and 2.853 ng/lava, respectively, while PS NPs in glands were quantified at 0.636, 0.284, and 0.113 ng/lava and eventually fell below the detection limit. The PS NPs in glands remained below the detection limit at the end of Weeks 5 and 6. This indicates that initially, NPs generated in the gut entered glands, then declined gradually and eventually disappeared or possibly biodegraded after Week 4, associated with the elevated plastic-degrading capacities of T. molitor larvae. Our findings unveil rapid synergistic MP biodegradation by the larval host and gut microbiota, as well as the fate of generated NPs, providing new insights into the risks and fate associated with NPs during invertebrate-mediated plastic biodegradation.


Subject(s)
Biodegradation, Environmental , Larva , Microplastics , Polystyrenes , Tenebrio , Animals , Microplastics/metabolism , Tenebrio/metabolism , Larva/metabolism , Plastics/metabolism , Gastrointestinal Microbiome
6.
Environ Sci Technol ; 58(18): 7826-7837, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38653213

ABSTRACT

The interaction effects between the main components (proteins (P), carbohydrates (C), and lipids (L)) of protein-rich biomass during microwave-assisted pyrolysis were investigated in depth with an exploration of individual pyrolysis and copyrolysis (PC, PL, and CL) of model compounds. The average heating rate of P was higher than those of C and L, and the interactions in all copyrolysis groups reduced the max instant heating rate. The synergistic extent (S) of PC and PL for bio-oil yield was 16.78 and 18.24%, respectively, indicating that the interactions promoted the production of bio-oil. Besides, all of the copyrolysis groups exhibited a synergistic effect on biochar production (S = 19.43-28.24%), while inhibiting the gas generation, with S ranging from -20.17 to -6.09%. Regarding the gaseous products, apart from H2, P, C, and L primarily generated CO2, CO, and CH4, respectively. Regarding bio-oil composition, the interactions occurring within PC, PL, and CL exhibited a significantly synergistic effect (S = 47.81-412.96%) on the formation of N-heterocyclics/amides, amides/nitriles, and acids/esters, respectively. Finally, the favorable applicability of the proposed interaction effects was verified with microalgae. This study offers valuable insights for understanding the microwave-assisted pyrolysis of protein-rich biomass, laying the groundwork for further research and process optimization.


Subject(s)
Biomass , Microwaves , Pyrolysis , Proteins/chemistry , Lipids/chemistry , Charcoal/chemistry , Carbohydrates/chemistry , Biofuels
7.
Adv Mater ; : e2400894, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38636448

ABSTRACT

Peritoneal metastasis (PM) is considered one of the most dreaded forms of cancer metastases for both patients and physicians. Aggressive cytoreductive surgery (CRS) is the primary treatment for peritoneal metastasis. Unfortunately, this intensive treatment frequently causes clinical complications, such as postoperative recurrence, metastasis, and adhesion formation. Emerging evidence suggests that neutrophil extracellular traps (NETs) released by inflammatory neutrophils contribute to these complications. Effective NET-targeting strategies thus show considerable potential in counteracting these complications but remain challenging. Here, one type of sulfoxide-containing homopolymer, PMeSEA, with potent fouling-resistant and NET-inhibiting capabilities, is synthesized and screened. Hydrating sulfoxide groups endow PMeSEA with superior nonfouling ability, significantly inhibiting protein/cell adhesion. Besides, the polysulfoxides can be selectively oxidized by ClO- which is required to stabilize the NETs rather than H2O2, and ClO- scavenging effectively inhibits NETs formation without disturbing redox homeostasis in tumor cells and quiescent neutrophils. As a result, PMeSEA potently prevents postoperative adhesions, significantly suppresses peritoneal metastasis, and shows synergetic antitumor activity with chemotherapeutic 5-Fluorouracil. Moreover, coupling CRS with PMeSEA potently inhibits CRS-induced tumor metastatic relapse and postoperative adhesions. Notably, PMeSEA exhibits low in vivo acute and subacute toxicities, implying significant potential for clinical postoperative adjuvant treatment.

8.
Environ Sci Pollut Res Int ; 31(16): 24547-24558, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38446294

ABSTRACT

Sediments are the vital fate of organic compounds, and the recognition of organic compounds in sediments is constructive in providing comprehensive and long-term information. In this study, a three-step nontarget screening (NTS) analysis workflow using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS) revealed the extensive existence of organic compounds in the Taipu River sediment. Organic compounds (705) were detected and divided into four structure-related groups or eight use-related classes. In the Taipu River's mainstream, a significant difference was found in the composition profiles of the identified organic compounds among various sites, demonstrating the organic compounds were more abundant in the midstream and downstream than in the upstream. Meanwhile, the hydrodynamic force was recognized as a potential factor influencing organic compounds' occurrence. Based on multiple statistical analyses, the shipping and textile printing industries were considered the significant contributors to the identified organic compounds. Considering the principles of the priority substances and the current status of the substances, two traditional pollutants and ten emerging organic compounds were recognized as the priority organic compounds for the Taipu River. Conclusively, this study established a workflow for NTS analysis of sediment samples and demonstrated the necessity of NTS analysis to evaluate the impact of terrestrial emissions of organic compounds on the aquatic environment.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Organic Chemicals/analysis , China
9.
J Hazard Mater ; 470: 134166, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38554511

ABSTRACT

UV/peracetic acid (PAA) treatment presents a promising approach for antibiotic removal, but its effects on microbial community and proliferation of antibiotic resistance genes (ARGs) during the subsequent bio-treatment remain unclear. Thus, we evaluated the effects of the UV/PAA on tetracycline (TTC) degradation, followed by introduction of the treated wastewater into the bio-treatment system to monitor changes in ARG expression and biodegradability. Results demonstrated effective TTC elimination by the UV/PAA system, with carbon-centered radicals playing a significant role. Crucially, the UV/PAA system not only eliminated antibacterial activity but also inhibited potential ARG host growth, thereby minimizing the emergence and dissemination of ARGs during subsequent bio-treatment. Additionally, the UV/PAA system efficiently removed multi-antibiotic resistant bacteria and ARGs from the bio-treatment effluent, preventing ARGs from being released into the environment. Hence, we propose a multi-barrier strategy for treating antibiotic-containing wastewater, integrating UV/PAA pre-treatment and post-disinfection with bio-treatment. The inhibition of ARGs transmission by the integrated system was verified through actual soil testing, confirming its effectiveness in preventing ARGs dissemination in the surrounding natural ecosystem. Overall, the UV/PAA treatment system offers a promising solution for tackling ARGs challenges by controlling ARGs proliferation at the source and minimizing their release at the end of the treatment process.


Subject(s)
Anti-Bacterial Agents , Peracetic Acid , Ultraviolet Rays , Wastewater , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Peracetic Acid/pharmacology , Tetracycline/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial/drug effects , Water Purification/methods , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/toxicity , Bacteria/drug effects , Bacteria/genetics , Bacteria/radiation effects , Disinfection/methods , Biodegradation, Environmental
10.
Medicine (Baltimore) ; 103(12): e37215, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518001

ABSTRACT

BACKGROUND: To date, there is no standardized practice for the use of pharmacological sedatives during flexible bronchoscopy, particularly for elderly patients. This exploratory study aimed to assess the efficacy and safety of remimazolam at a single induced dose for deep sedation in elderly patients undergoing diagnostic flexible bronchoscopy (DFB), and compare with midazolam, a commonly used sedative. METHODS: A total of 100 elderly patients (age range 65-80 yr; American Society of Anesthesiologists Physical Status I-III) undergoing DFB were randomly allocated into 2 groups according to the sedatives used for induction: the remimazolam group and the midazolam group. Sedation induction was initiated by an intravenous bolus of remimazolam (0.135 mg/kg) or midazolam (0.045 mg/kg), respectively, both groups were combined with a high-dose of alfentanil (18 µg/kg), and supplemented with high-flow nasal cannula (HFNC) oxygen supply at a flow rate of 45 L/min. If the target depth of sedation was not achieved, propofol would be titrated as a rescue. The primary outcome was the success rate of sedation at a single induced dose to achieve target depth (Ramsay sedation score [RSS] = 4) during induction, intraoperative changes in vital signs, postoperative follow-up situation and incidence of post-bronchoscopy adverse events were evaluated as secondary outcomes. RESULTS: The success rate of sedation in the remimazolam group was significantly higher than that in the midazolam group (65.2% vs 39.6%, P = .013), while the incidence of extra sleep within 6 hours after procedure was lower in the remimazolam group as compared to the midazolam group (10.9% vs 31.3%, P = .016). No statistically significant differences were observed between the 2 groups regarding hemodynamic fluctuations, incidence of hypoxemia, and cough response during the procedure, as well as postoperative recall, willingness to undergo reexamination, and other post-bronchoscopy adverse events. CONCLUSIONS: Bolus administration of remimazolam offers advantages over midazolam for deep sedation in elderly patients undergoing DFB, in terms of a higher success rate of sedation and a lower incidence of extra sleep within 6 hours after procedure, though the safety profiles of both groups were favorable.


Subject(s)
Deep Sedation , Propofol , Humans , Aged , Aged, 80 and over , Midazolam , Bronchoscopy/methods , Benzodiazepines , Hypnotics and Sedatives/therapeutic use , Double-Blind Method
11.
Adv Sci (Weinh) ; 11(12): e2304342, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38229183

ABSTRACT

Immunotherapy targeting PD-L1 is still ineffective for a wide variety of tumors with high unpredictability. Deploying combined immunotherapy with alternative targeting is practical to overcome this therapeutic resistance. Here, the deficiency of serine-threonine kinase STK24 is observed in tumor cells causing substantial attenuation of tumor growth in murine syngeneic models, a process relying on cytotoxic CD8+ T and NK cells. Mechanistically, STK24 in tumor cells associates with and directly phosphorylates AKT at Thr21, which promotes AKT activation and subsequent PD-L1 induction. Deletion or inhibition of STK24, by contrast, blocks IFN-γ-mediated PD-L1 expression. Various murine models indicate that in vivo silencing of STK24 can significantly enhance the efficacy of the anti-PD-1 blockade strategy. Elevated STK24 levels are observed in patient specimens in multiple tumor types and inversely correlated with intratumoral infiltration of cytotoxic CD8+ T cells and with patient survival. The study collectively identifies STK24 as a critical modulator of antitumor immunity, which engages in AKT and PD-L1/PD-1 signaling and is a promising target for combined immunotherapy.


Subject(s)
B7-H1 Antigen , CD8-Positive T-Lymphocytes , Humans , Animals , Mice , B7-H1 Antigen/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tumor Escape , Cell Line, Tumor
12.
Chemosphere ; 346: 140601, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37918536

ABSTRACT

Due to the diversity and variability of harmful ions in polluted water bodies, the selective removal and separation for specific ions is of great significance in water purification and resource processes. Capacitive deionization (CDI), an emerging desalination technology, shows great potential to selectively remove harmful ionic pollutants and further recover valuable ions because of the simple operation and low energy consumption. Researchers have done a lot of work to investigate ion selectivity utilizing CDI, including both theoretical and experimental studies. Nevertheless, in the investigation of selective mechanisms, phenomena where carbon materials exhibit entirely opposite selectivity require further analysis. Furthermore, there is a need to summarize the specific chemical reaction mechanisms, including the formation of hydrogen bonds, complexation reactions, and ligand exchanges, within selective electrodes, which have not been thoroughly examined in detail previously. In order to fill these gaps, in this review, we summarized the recent progress of CDI technologies for ion selective separation, and explored the selective separation mechanism of CDI from three aspects: selective physical adsorption, specific chemical reaction, and the utilization of selective barriers. Additionally, this review analyzes in detail the formation process of chemical bonds and ion conversion pathways when ions interact with electrode materials. Finally, some significant development prospects and challenges were offered for the future selective CDI systems. We believe the review will provide new insights for researchers in the field of ion selective separation.


Subject(s)
Carbon , Water Purification , Ions/chemistry , Electrodes , Adsorption
13.
J Control Release ; 366: 128-141, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104775

ABSTRACT

Tumor-associated macrophages play pivotal roles in tumor progression and metastasis. Macrophage-mediated clearance of apoptotic cells (efferocytosis) supports inflammation resolution, contributing to immune evasion in colorectal cancers. To reverse this immunosuppressive process, we propose a readily translatable RNA therapy to selectively inhibit macrophage-mediated efferocytosis in tumor microenvironment. A clinically approved lipid nanoparticle platform (LNP) is employed to encapsulate siRNA for the phagocytic receptor MerTK (siMerTK), enabling selective MerTK inhibition in the diseased organ. Decreased MerTK expression in tumor-associated macrophages results in apoptotic cell accumulation and immune activation in tumor microenvironment, leading to suppressed tumor growth and better survival in both liver and peritoneal metastasis models of colorectal cancers. siMerTK delivery combined with PD-1 blockade further produces enhanced antimetastatic efficacy with reactivated intratumoral immune milieu. Collectively, LNP-based siMerTK delivery combined with immune checkpoint therapy may present a feasible modality for metastatic colorectal cancer therapy.


Subject(s)
Colonic Neoplasms , Efferocytosis , Humans , c-Mer Tyrosine Kinase , Macrophages , RNA, Small Interfering , Tumor Microenvironment
14.
Medicine (Baltimore) ; 102(48): e36362, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38050299

ABSTRACT

RATIONALE: Some laryngeal masses are typically asymptomatic and easily ignored. However, they can be rare causes of unanticipated difficult airway, leading to critical situations such as "cannot ventilate" or "cannot ventilate and cannot intubate" during anesthesia induction. Inappropriate airway management in such scenarios can have catastrophic consequences for an anesthetized patient. Here we report a case of sudden, unanticipated difficult mask ventilation caused by an asymptomatic supraglottic mass during sedative induction, which was quickly and effectively relieved by the Heimlich maneuver and chest compression. PATIENT CONCERNS: We report a rare case of airway crisis occurred during sedative induction in a 63-year-old patient scheduled for a routine flexible bronchoscopy, and no evidence of respiratory difficulty or signs of obstruction was found in preoperative evaluation. DIAGNOSES: A detailed examination of laryngopharyngeal structure under bronchoscopy revealed a supraglottic soft-tissue mass with a size of 1.6 × 0.8 cm covering the membranous part of the glottic area, which was the true cause of difficult mask ventilation in this patient during sedative induction. INTERVENTIONS: As the unanticipated difficult mask ventilation occurred, 2-handed mask ventilation was initiated immediately for 9 attempts but failed. Fortunately, the airway crisis was successfully relieved with 2 Heimlich attempts and 3 chest compressions, and no need for a laryngeal mask airway. OUTCOMES: Once the airway crisis was relieved and the supraglottic mass was confirmed, the patient underwent a second sedative anesthesia and a successful laryngeal mask airway-assisted bronchoscopy, with no post-bronchoscopy adverse events. LESSONS: Asymptomatic supraglottic masses can cause valve-like upper airway obstruction and lead to unanticipated difficult mask ventilation. The Heimlich maneuver and chest compression may be effective in such critical situations and can serve as an emergency intervention.


Subject(s)
Heimlich Maneuver , Laryngeal Masks , Humans , Middle Aged , Intubation, Intratracheal , Laryngeal Masks/adverse effects , Anesthesia, General , Hypnotics and Sedatives
15.
Article in English | MEDLINE | ID: mdl-38015404

ABSTRACT

The ever-increasing concern for energy shortages and greenhouse effect has triggered the development of sustainable green technologies. Microalgae have received more attention due to the characteristics of biofuel production and CO2 fixation. From the perspective of autotrophic growth, the optimization of light quality has the potential to promote biomass production and bio-component accumulation in microalgae at low cost. In this study, bibliometric analysis was used to describe the basic features, identify the hotspots, and predict future trends of the research related to the light quality on microalgae cultivation. In addition, a mini-review referring to regulation methods of light quality was provided to optimize the framework of research. Results demonstrated that China has the greatest interest in this area. The destination of most research was to obtain biofuels and high-value-added products. Both blue and red lights were identified as the crucial spectrums for microalgae cultivation. However, sunlight is the most affordable light resource, which could not be fully utilized by microalgae through the photosynthetic process. Hence, some regulation approaches (e.g., dyes, plasmonic scattering, and carbon-based quantum dots) are proposed to increase the proportion of beneficial spectrum for enhancement of photosynthetic efficiency. In summary, this review introduces state-of-the-art research and provides theoretical guidance for light quality optimization in microalgae cultivation to obtain more benefits.

16.
Medicine (Baltimore) ; 102(37): e35227, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37713863

ABSTRACT

RATIONALE: One of the catastrophic complications of surgical hysteroscopy is venous gas embolism (VGE), and this event could cause morbidity and in serious cases may even lead to death. However, in cases of VGE accompanied by refractory hypokalemia is rare and can significantly increase the difficulty of treatment and resuscitation. Here, we successfully treated a patient with fatal VGE during surgical hysteroscopy, accompanied by difficult resuscitation with refractory hypokalemia. PATIENT CONCERNS: We report a rare case of sudden cardiac arrest due to VGE during surgical hysteroscopy, followed by difficult resuscitation with refractory hypokalemia. DIAGNOSIS: VGE was diagnosed by a sudden decrease in EtCO2, a loud mill wheel murmur in the thoracic area, and a small number of air bubbles evacuated from the internal jugular catheter. And refractory hypokalemia was diagnosed by serum potassium levels dropping frequently to as low as 2.0 mmol/L within 36 hours of resuscitation after cardiac arrest. INTERVENTIONS: Our vigilant anesthesiologist noticed the early sign of VGE with a sudden drop in EtCO2, and as the cardiac arrest occurred, interventional maneuvers were implemented quickly including termination of the surgical procedure, adjustment of the patient's position, cardiac resuscitation, continuous chest compression, and correction of electrolyte disturbances, particularly refractory hypokalemia during the early stage of resuscitation. OUTCOMES: The patient regained consciousness 4 days after the cardiac arrest and was discharged 1 month later without any neurological deficits. LESSONS: As a relatively simple procedure, surgical hysteroscopy may have catastrophic complications. This case demonstrates the full course of fatal gas embolism and difficult resuscitation during hysteroscopic surgery, and emphasizes the importance of early detection, prompt intervention, and timely correction of electrolyte disturbances, such as refractory hypokalemia.


Subject(s)
Embolism, Air , Heart Arrest , Hypokalemia , Water-Electrolyte Imbalance , Humans , Female , Pregnancy , Hypokalemia/etiology , Hysteroscopy/adverse effects , Embolism, Air/etiology , Embolism, Air/therapy , Heart Arrest/etiology , Heart Arrest/therapy , Electrolytes
17.
Water Res ; 245: 120642, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37774539

ABSTRACT

Phosphorus (P) recovery from human manure (HM) is critical for food production security. For the first time, a one-step hydrothermal carbonation (HTC) treatment of HM was proposed in this study for the targeted high-bioavailable P recovery from P-rich hydrochars (PHCs) for direct soil application. Furthermore, the mechanism for the transformation of P speciation in the derived PHCs was also studied at the molecular level. A high portion of P (80.1∼89.3%) was retained in the solid phase after HTC treatment (120∼240°C) due to high metal contents. The decomposition of organophosphorus (OP) into high-bioavailable orthophosphate (Ortho-P) was accelerated when the HTC temperature was increased, reaching ∼97.1% at 210°C. In addition, due to the high content of Ca (40.45±2.37 g/kg) in HM, the HTC process promoted the conversion of low-bioavailable non-apatite inorganic (NAIP) into high-bioavailable apatite inorganic P (AP). In pot experiments with pea seedling growth, the application of newly obtained PHCs significantly promoted plant growth, including average wet/dry weight and plant height. Producing 1 ton of PHCs (210°C) with the same effective P content as agricultural-type calcium superphosphate could result in a net return of $58.69. More importantly, this pathway for P recovery is predicted to meet ∼38% of the current agricultural demand.

18.
Chemosphere ; 344: 140300, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37777089

ABSTRACT

Surface electron transport and transfer of catalysts have important consequences for persulfate (PS) activation in PS system. In this paper, an electron-rich Cu-beta zeolites catalyst was synthesized utilizing a straightforward solid-state ion exchange technique to efficiently degrade sulfadiazine. The X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) results revealed that Cu element substitutes Al element and enters the beta molecular sieve framework smoothly. Furthermore, the X-ray photoelectron spectroscopy (XPS) measurements demonstrated that the Cu-beta catalyst is primarily Cu0. Cu-beta zeolites catalyst can exhibit excellent catalytic activity to degrade sulfadiazine with the oxidant of PS. The optimal sulfadiazine removal performance was explored by adjusting reaction parameters, including sulfadiazine concentration, catalyst dosage, oxidant dosage, and solution pH. The sulfadiazine removal efficiency in the Cu-beta zeolites/PS system could reach 90.5% at the optimal reaction condition ([PS]0 = 0.5 g/L, [Cu-beta zeolites]0 = 1.0 g/L, pH = 7.0) with 50 mg/L of sulfadiazine. Meanwhile, The degradation efficiency was less affected by anionic interference (Cl-, SO4-, HCO3-). The surface electron transport and transfer of the Cu-beta zeolites catalyst were significant causes for the remarkable degradation performance. According to electron paramagnetic resonance (EPR) and quenching studies, the Cu-beta zeolites/PS system was mostly dominated by SO4•- in the degradation of sulfadiazine. Furthermore, two possible pathways for sulfadiazine degradation were proposed according to the analysis of intermediate products detected by the liquid chromatography-mass spectrometry (LC-MS).


Subject(s)
Water Pollutants, Chemical , Zeolites , Sulfadiazine , Oxidation-Reduction , Electrons , Oxidants , Water Pollutants, Chemical/analysis
19.
Environ Sci Technol ; 57(40): 15099-15111, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37751481

ABSTRACT

It remains unknown whether plastic-biodegrading macroinvertebrates generate microplastics (MPs) and nanoplastics (NPs) during the biodegradation of plastics. In this study, we utilized highly sensitive particle analyzers and pyrolyzer-gas chromatography mass spectrometry (Py-GCMS) to investigate the possibility of generating MPs and NPs in frass during the biodegradation of polystyrene (PS) and low-density polyethylene (LDPE) foams by mealworms (Tenebrio molitor larvae). We also developed a digestive biofragmentation model to predict and unveil the fragmentation process of ingested plastics. The mealworms removed 77.3% of ingested PS and 71.1% of ingested PE over a 6-week test period. Biodegradation of both polymers was verified by the increase in the δ13C signature of residual plastics, changes in molecular weights, and the formation of new oxidative functional groups. MPs accumulated in the frass due to biofragmentation, with residual PS and PE exhibiting the maximum percentage by number at 2.75 and 7.27 µm, respectively. Nevertheless, NPs were not detected using a laser light scattering sizer with a detection limit of 10 nm and Py-GCMS analysis. The digestive biofragmentation model predicted that the ingested PS and PE were progressively size-reduced and rapidly biodegraded, indicating the shorter half-life the smaller plastic particles have. This study allayed concerns regarding the accumulation of NPs by plastic-degrading mealworms and provided critical insights into the factors controlling MP and NP generation during macroinvertebrate-mediated plastic biodegradation.


Subject(s)
Polystyrenes , Tenebrio , Animals , Polyethylene , Tenebrio/metabolism , Plastics , Larva/metabolism , Biodegradation, Environmental , Microplastics
20.
Nat Biotechnol ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37749267

ABSTRACT

Increasing evidence implicates the tumor microbiota as a factor that can influence cancer progression. In patients with colorectal cancer (CRC), we found that pre-resection antibiotics targeting anaerobic bacteria substantially improved disease-free survival by 25.5%. For mouse studies, we designed an antibiotic silver-tinidazole complex encapsulated in liposomes (LipoAgTNZ) to eliminate tumor-associated bacteria in the primary tumor and liver metastases without causing gut microbiome dysbiosis. Mouse CRC models colonized by tumor-promoting bacteria (Fusobacterium nucleatum spp.) or probiotics (Escherichia coli Nissle spp.) responded to LipoAgTNZ therapy, which enabled more than 70% long-term survival in two F. nucleatum-infected CRC models. The antibiotic treatment generated microbial neoantigens that elicited anti-tumor CD8+ T cells. Heterologous and homologous bacterial epitopes contributed to the immunogenicity, priming T cells to recognize both infected and uninfected tumors. Our strategy targets tumor-associated bacteria to elicit anti-tumoral immunity, paving the way for microbiome-immunotherapy interventions.

SELECTION OF CITATIONS
SEARCH DETAIL
...