Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 143: 109214, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37977544

ABSTRACT

As one of short-chain fatty acids, butyrate is an important metabolite of dietary fiber by the fermentation of gut commensals. Our recent study uncovered that butyrate promoted IL-22 production in fish macrophages to augment the host defense. In the current study, we further explored the underlying signaling pathways in butyrate-induced IL-22 production in fish macrophages. Our results showed that butyrate augmented the IL-22 expression in head kidney macrophages (HKMs) of turbot through binding to G-protein receptor 41 (GPR41) and GPR43. Moreover, histone deacetylase 3 (HDAC3) inhibition apparently up-regulated the butyrate-enhanced IL-22 generation, indicating HDACs were engaged in butyrate-regulated IL-22 secretion. In addition, butyrate triggered the STAT3/HIF-1α signaling to elevate the IL-22 expression in HKMs. Importantly, the evidence in vitro and in vivo was provided that butyrate activated autophagy in fish macrophages via IL-22 signaling, which contributing to the elimination of invading bacteria. In conclusion, we clarified in the current study that butyrate induced STAT3/HIF-1α/IL-22 signaling pathway via GPCR binding and HDAC3 inhibition in fish macrophages to activate autophagy that was involved in pathogen clearance in fish macrophages.


Subject(s)
Butyrates , Flatfishes , Animals , Butyrates/metabolism , Flatfishes/metabolism , Head Kidney/metabolism , Macrophages/metabolism , Signal Transduction , Autophagy , Interleukin-22
2.
Front Plant Sci ; 14: 1134370, 2023.
Article in English | MEDLINE | ID: mdl-36895873

ABSTRACT

Soil Cadmium (Cd) pollution has become a serious environmental problem. Silicon (Si) plays key roles in alleviating Cd toxicity in plants. However, the effects of Si on mitigation of Cd toxicity and accumulation of Cd by hyperaccumulators are largely unknown. This study was conducted to investigate the effect of Si on Cd accumulation and the physiological characteristics of Cd hyperaccumulator Sedum alfredii Hance under Cd stress. Results showed that, exogenous Si application promoted the biomass, Cd translocation and concentration of S. alfredii, with an increased rate of 21.74-52.17% for shoot biomass, and 412.39-621.00% for Cd accumulation. Moreover, Si alleviated Cd toxicity by: (i) increasing chlorophyll contents, (ii) improving antioxidant enzymes, (iii) enhancing cell wall components (lignin, cellulose, hemicellulose and pectin), (iv) raising the secretion of organic acids (oxalic acid, tartaric acid and L-malic acid). The RT-PCR analysis of genes that involved in Cd detoxification showed that the expression of SaNramp3, SaNramp6, SaHMA2 and SaHMA4 in roots were significantly decreased by 11.46-28.23%, 6.61-65.19%, 38.47-80.87%, 44.80-69.85% and 33.96-71.70% in the Si treatments, while Si significantly increased the expression of SaCAD. This study expanded understanding on the role of Si in phytoextraction and provided a feasible strategy for assisting phytoextraction Cd by S. alfredii. In summary, Si facilitated the Cd phytoextraction of S. alfredii by promoting plant growth and enhancing the resistance of plants to Cd.

3.
Environ Pollut ; 305: 119266, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35413404

ABSTRACT

Soil Cd and Zn contamination has become a serious environmental problem. This work explored the performance of wood vinegar (WV) in enhancing the phytoextraction of Cd/Zn by hyperaccumulator Sedum alfredii Hance. Rhizosphere chemical properties, enzyme activities and bacterial community were analyzed to determine the mechanisms of metal accumulation in this process. Results demonstrated that, after 120 days growth, different times dilution of WV increased the shoot biomass of S. alfredii by 85.2%-148%. In addition, WV application significantly increased soil available Cd and Zn by lowing soil pH, which facilitated plant uptake. The optimal Cd and Zn phytoextraction occurred from the 100 times diluted WV (D100), which increased the Cd and Zn extraction by 188% and 164%, compared to CK. The 100 and 50 times diluted WV significantly increased soil total and available carbon, nitrogen and phosphorus, and enhancing enzyme activities of urease, acid phosphatase, invertase and protease by 10.1-21.4%, 29.1-42.7%,12.2-38.3% and 26.8-85.7%, respectively, compared to CK. High-throughput sequencing revealed that the D 100 significantly increased the bacterial diversity compared to CK. Soil bacterial compositions at phylum, family and genera level were changed by WV addition. Compared to CK, WV application increased the relative abundances of genus with plant growth promotion and metal mobilization function such as, Bacillus, Gemmatimonas, Streptomyces, Sphingomonas and Polycyclovorans, which was positively correlated to biomass, Cd/Zn concentrations and extractions by S. alfredii. Structural equation modeling analysis showed that, soil chemical properties, enzyme activities and bacterial abundance directly or indirectly contributed to the biomass promotion, Cd, and Zn extraction by S. alfredii. To sum up, WV improved phytoextraction efficiency by enhancing plant growth, Cd and Zn extraction and increasing soil nutrients, enzyme activities, and modifying bacterial community.


Subject(s)
Sedum , Soil Pollutants , Acetic Acid , Bacteria/metabolism , Biodegradation, Environmental , Cadmium/analysis , Methanol , Plant Roots/metabolism , Rhizosphere , Sedum/metabolism , Sedum/microbiology , Soil/chemistry , Soil Pollutants/analysis , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...