Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 44(8): 4397-4405, 2023 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-37694634

ABSTRACT

In order to evaluate the distribution characteristics of fluorine geochemistry in the surface soil and human health risk in Xiong'an New District, GIS spatial analysis and correlation analysis were used to analyze the depleted and enriched features and influencing factors of soil fluoride and to carry out the soil fluoride health risk assessment. The uncertainty of the health risk assessment results was studied based on the Monte Carlo stochastic simulation. The results showed that the average content of fluorine was 641 mg·kg-1, which was 1.34 times the background value of the national A-layer soil. The excess fluorine and high-grade samples accounted for more than 85%, and the overall soil fluorine content was relatively high. The average content of fluoride of the irrigation water samples was 0.85 mg·L-1, the spatial distribution characteristics of which were affected by the hydrochemical type and flow direction of shallow groundwater. The vertical spatial variation of soil fluoride, mainly affected by the vertical distribution of soil physicochemical properties such as soil organic carbon and texture, was not obvious. The depletion and enrichment of topsoil fluorine was mainly controlled by the geological background, and its spatial distribution was affected by external inputs, such as human factors (agricultural irrigation water, fertilization, and atmospheric dry and wet deposition). The soil fluoride content was significantly correlated with the iconic indicators of the geomorphological environment, including the content of Al2O3, Fe2O3, MgO, K2O, soil organic carbon (Corg.), cation exchange capacity (CEC), clay, and silt (P<0.01). The results of human health risk assessment showed that oral intake was the main exposure risk route of soil fluoride. The non-carcinogenic health risk index HQ of adults was less than 1, and the harm could be ignored. The probability of non-carcinogenic health risk exceeding the threshold for adults and children was 34.3% and 27.6%, respectively, and daily soil intake was the most sensitive parameter.


Subject(s)
Metals, Heavy , Soil , Adult , Child , Humans , Fluorides , Fluorine , Carbon , Risk Assessment
2.
Huan Jing Ke Xue ; 42(4): 1989-2002, 2021 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-33742834

ABSTRACT

In order to evaluate the land quality geochemical survey achievement in the service of the accurate management of urban land resources, the initial area of the Xiong'an New District as urbanization pathfinder in China is chosen as the research subject. The sample points were set by differential classification, and the spatial interpolation accuracy of the soil elements at a plot scale and a quantitative assessment of the consistency of the land plot (pattern spot) prediction evaluation were studied under the conditions of different sampling densities. The regional geochemical variation values randomly distributed on the plane can be reflected quantitatively by differential classification sampling, which can meet the basic demand of the quality attribute of a single plot (map spot) by the accurate management of urban land resources. The spatial variability of soil elements is mostly middle to moderate, and Cd, Cu, Pb, Hg, Se, N, P, and other elements of high spatial variability are affected by human industrial and agricultural production activities. Under the same sampling density, the larger the element variation coefficient, the worse the spatial interpolation accuracy. Although the interpolation accuracy of the same element index is affected by the sampling density, the increase in the sampling density could not identify the continuous component on the structure of the soil element content. The soil environment is clean, and the heavy metal content is lower than the GB15618-2018 standard. The interpolation results are basically consistent with the grading results of the measured values, while the contents of N, P, and K of the nutrient indices vary greatly, and the predicted and measured geochemical grades of the plots (map spot) differ substantially under the influence of factors such as human disturbance and spatial variability. The quantitative evaluation of the six different sampling densities indicates that the 16 points·km-2 sampling density adopted in the geochemical survey and evaluation of urban land quality can satisfy the needs of an accurate control of urban land resources in the study area and similar areas. The research can provide key technologies to support and serve the accurate management of urban land resources for geochemical surveys and the evaluation of land quality in land parcel scale cities.

3.
Huan Jing Ke Xue ; 42(4): 2003-2015, 2021 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-33742835

ABSTRACT

In order to evaluate the potential ecological risk of heavy metals in the soil-crop system in the Xiong'an New District, the heavy metal contents and forms in wheat seed and root soil samples are analyzed, and the comprehensive pollution index (IPIN), potential ecological risk index (RI), bio-enrichment coefficient (BFC), risk assessment code (RAC), principal component analysis, and correlation analysis are used to assess the potential ecological risk of heavy metals and analyze their sources. The results indicate that the average content of Cd, Cu, Pb, and Zn in the root soil is significantly higher than the soil background value in Hebei province. The IPIN ranges from 0.2 to 5.18, 94.83% of the soil samples are in the safe and pollution-free grade, and the potential ecological risks of heavy metal are slight and moderate, accounting for 64.66% and 30.17%, respectively. Cd has the greatest potential ecological harm, followed by Hg, Cr, Ni, and Zn. All the heavy metal elements besides Cd in the root soil are dominated by the residual form, which accounts for 60%, and the bioactive form (ion-exchange and water-soluble state) of Cd accounts for 33.43%, indicating relatively high bio-availability. The risk assessment code can be ranked as Cd > Ni > Hg > As > Cu > Cr > Zn > Pb, and the risk of Cd is moderate, while other elements are of low or no risk. The leading potential source of heavy metals is human activity combined with the geological background. The migration and enrichment capability of the wheat seeds is in order from strong to weak of Zn > Cu > Cd > Hg > As > Ni > Pb > Cr, and the biological effective components of As, Cd, Pb, and Zn plays an substantial role in promoting the absorption of heavy metals. The content of heavy metals in the wheat seeds has a negative correlation with the soil pH, and the physical and chemical indices, such as OM and CEC, has bi-directional influence on the biological effective state of the heavy metals.


Subject(s)
Metals, Heavy , Soil Pollutants , China , Environmental Monitoring , Humans , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
4.
Huan Jing Ke Xue ; 42(3): 1514-1522, 2021 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-33742949

ABSTRACT

To understand the main factors influencing the translocation and accumulation of cadmium (Cd) in soil-crop systems in typical karst areas, 68 sets of paddy soil and rice grain samples were collected in Guangxi Province. These were used to analyze Cd concentrations and soil properties (pH, organic matter (OM) content, oxide content, and texture). Spearman's correlation coefficients and principal component analysis (PCA) were used to examine the effects of soil properties on Cd concentrations and identify the main influencing factors. The studied soils were highly enriched in iron oxide (TFe2O3), aluminum oxide (Al2O3), and manganese oxide (MnO) compared to background levels, with average concentrations of 20.2%, 19.0%, and 0.2%, respectively. However, the soils are relatively depleted in silica (SiO2), with an average concentration of 41.0%. The soils are strongly weathered and leached in study area, giving rise to rich occurrences of Fe-Mn nodules. The concentrations of TFe2O3 and MnO in the study soils were significantly correlated with soil Cd, rice seed Cd, and the Cd bioconcentration factor (BCF). The PCA analysis further showed that TFe2O3 and MnO in soils were the main factors affecting the migration and enrichment of Cd while soil pH, OM, and Al2O3 had less of an influence. Furthermore, SiO2 and soil texture indirectly affected the migration and enrichment of Cd. It is suggested that the Fe-Mn nodules effectively adsorb and immobilize Cd in the study area soils, acting as a heavy metal scavenger that reduced the biological accessibility of Cd.

5.
Huan Jing Ke Xue ; 41(9): 4169-4179, 2020 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-33124299

ABSTRACT

To build a soil environmental quality monitoring network and collect the systematic soil geochemical data of heavy metals before and after the construction of Xiong'an New District(XND), long-term variations in soil heavy metal levels during the XND construction were monitored based on the land quality geochemical survey monitoring data and the geochemical distribution of heavy metals. Parameters such as sampling density, sampling quantity, and sampling period were estimated to construct the geochemical monitoring network, which provides a reference for the future long-term monitoring of soil heavy metal geochemistry in XND. The results indicate that variations in the amount of heavy metals As, Cd, Cu, Hg, and Pb are greater than 36%, while the nugget coefficients of Cd, Cu, and Pb are greater than 75% because of the superposition of manmade sources on the high natural background levels. At the 95% and 90% confidence levels, while the allowable error Δ of the sample mean value is 5%, 10%, and 15% and heavy metals as As, Cd, Cu, Hg,Ni, Pb and Zn is monitored in soil environmental quality monitoring network, the proper numbers in the study area are 1077, 270, 120 and 767, 192, 86, respectively. The minimum detectable change(MDC)of each heavy metal species is between 0.0025 and 2.54 mg ·kg-1. Soil heavy metal monitoring requires different revisit intervals under different annual change rates, but in the study area, revisit intervals of soil monitoring are approximately two years under the current conditions of constant annual change rates.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , China , Environmental Monitoring , Mercury/analysis , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
6.
Huan Jing Ke Xue ; 41(1): 449-459, 2020 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-31854948

ABSTRACT

This study uses 68 sets of paddy soil and rice grain samples collected from an area of carbonate rocks in Guangxi Province, China, to explore the ecological risks of heavy metals (As, Cd, Cr, Cu, Hg, Pb, Ni, and Zn) in soils from a high background area. We analyzed the concentrations of these heavy metals in soil and grain samples, and their chemical speciation in soil, and use these data to assess the associated ecological risks by means of statistics, a geo-accumulation index, bioconcentration factors (BCF), and correlation analysis. The arithmetic mean values of heavy metals concentrations in soil samples from the study area were (75.8±50.1), (1.91±1.02), (467.0±253.1), (48.5±9.8), (0.21±0.08), (76.2±28.1), (84.2±25.0), and (258.0±122.6) mg·kg-1 for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, respectively, which were remarkably higher than of those from other regions within Guangxi Province and China. In comparison to China's soil environmental quality standard risk screening values (GB 15618-2018), the over-standard rates of Cd, As, and Cr were 95.6%, 86.8%, and 69.1%, respectively. In comparison to risk intervention values, the over-standard rates of Cd, As, and Cr were 27.9%, 17.6%, and 5.9%, respectively. Speciation analysis on heavy metals indicated that As, Cr, Cu, Ni, Pb, and Zn were mainly found in a residual form, and accounted for>80% of the total concentrations, and had a low bioavailability. The bioactive components (F1+F2+F3) of Cd accounted for 21%, and the bioactivity of Cd was higher than other elements. The potential bioavailable components (F4+F5+F6) of Hg accounted for 44%, with low total concentrations, which are understood to have little potential ecological harm for crops. However, the over-standard rates of Pb, Cd, and Cr in rice grains were only 23.5%, 8.8%, and 2.9%, respectively. Correlation analysis showed that there was no significant correlation between the concentrations of heavy metals in soils and the corresponding rice grains. The mean BCFs of each heavy metal were <0.1, and the BCFs of Hg, Pb, As, Cr, and Ni were <0.05. Overall, we found relatively high concentrations, low activity, and low ecological risks for heavy metals in the study area. For high geological background materials such as carbonate rocks, factors such as metal speciation, biological activity, and crop over-standard rates should be taken into account along with the traditional use of the total amount of heavy metals in a soil as the evaluation standard when formulating pollution control policies.


Subject(s)
Carbonates , Environmental Monitoring , Metals, Heavy/analysis , Soil Pollutants/analysis , Biological Availability , China , Risk Assessment , Soil
7.
Oncol Lett ; 10(2): 681-686, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26622553

ABSTRACT

In order to explore the regulation of the invasive ability of hepatocellular carcinoma cells and the underlying mechanism, mimics sequences of microRNA (miR)-125a (miR-125a-3p/5p) and scramble sequences (miR-125a-3p-s/5p-s) were transfected into human hepatocellular carcinoma cell lines, HCC-LM3 and HepG2, and the non-malignant epithelioid hepatic cell line QZG. To inhibit and upregulate the expression of miR-125a individually. Protein expression was detected by western blotting, and the cell proliferation and migration abilities were evaluated by soft agar colony formation and Transwell assay, respectively. It was revealed that the expression of miR-125a was downregulated in HepG2 and HCC-LM3 cells compared with that of QZG cells, and expression was markedly lower in HCC-LM3 cells than that in HepG2 cells (P<0.01). The colony formation and migration rates of the cells transfected with miR-125a-3p/5p were decreased compared with negative controls, but were increased in cells transfected with miR-125a-3p-3/5p-s (P<0.01). The protein and messenger RNA expression of phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) was decreased following transfection with miR-125a-5p, whereas expression was increased compared with negative controls following transfection with miR-125a-5p-s (P<0.01). Furthermore, the proliferation and migration abilities of cells were attenuated following inhibition of the PI3K/AKT/mTOR pathway by LY294002. The results of the present study indicated that miR-125a inhibits the invasive ability of hepatocellular carcinoma cells via regulation of the PI3K/AKT/mTOR pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...