Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 6: 1180, 2015.
Article in English | MEDLINE | ID: mdl-26579089

ABSTRACT

Aerobic ammonia oxidation plays a key role in the nitrogen cycle, and the diversity of the responsible microorganisms is regulated by environmental factors. Abundance and composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were investigated in the surface waters along an environmental gradient of the Yong River in Ningbo, East China. Water samples were collected from three pelagic zones: (1) freshwaters in the urban canals of Ningbo, (2) brackish waters in the downstream Yong River, and (3) coastal marine water of Hangzhou Bay. Shifts in activity and diversity of the ammonia-oxidizing microorganisms occurred simultaneously with changes in environmental factors, among which salinity and the availabilities of ammonium and oxygen. The AOA abundance was always higher than that of AOB and was related to the ammonia oxidation activity. The ratios of AOA/AOB in the brackish and marine waters were significantly higher than those found in freshwaters. Both AOA and AOB showed similar community compositions in brackish and marine waters, but only 31 and 35% similarity, respectively, between these waters and the urban inland freshwaters. Most of AOA-amoA sequences from freshwater were affiliated with sequences obtained from terrestrial environments and those collected from brackish and coastal areas were ubiquitous in marine, coastal, and terrestrial ecosystems. All AOB from freshwaters belonged to Nitrosomonas, and the AOB from brackish and marine waters mainly belonged to Nitrosospira.

2.
J Asian Nat Prod Res ; 15(3): 276-85, 2013.
Article in English | MEDLINE | ID: mdl-23421517

ABSTRACT

Multidrug resistance (MDR) has been a major problem in cancer chemotherapy. In this study, the aim was to explore the reversal effect and its potential mechanism of rosmarinic acid (RA) on SGC7901/Adr cells. 3-(4,5-Dimethylthiazol)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to investigate the reversal index of RA in SGC7901/Adr cell line. The intracellular accumulation of adriamycin, rhodamine123 (Rh123), and the expression of P-glycoprotein (P-gp) were assayed by flow cytometry. The influence of RA on the transcription of MDR1 gene was determined by reverse transcription-polymerase chain reaction. The results showed that RA could reverse the MDR of SGC7901/Adr cells, increase the intracellular accumulation of Adr and Rh123, and decrease the transcription of MDR1 gene and the expression of P-gp in SGC7901/Adr cells. These results indicated that RA was a potential multidrug resistance-reversing agent and warranted further investigations.


Subject(s)
Cinnamates/pharmacology , Depsides/pharmacology , Drug Resistance, Multiple/drug effects , ATP Binding Cassette Transporter, Subfamily B/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Doxorubicin/metabolism , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Humans , Molecular Structure , Stomach Neoplasms/metabolism , Vincristine/pharmacology , Rosmarinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...