Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1090311, 2023.
Article in English | MEDLINE | ID: mdl-36936961

ABSTRACT

The Interleukin-2 Family contains six kinds of cytokines, namely IL-2, IL-15, IL-4, IL-7, IL-9, and IL-21, all of which share a common γ chain. Many cytokines of the IL-2 family have been reported to be a driving force in immune cells activation. Therefore, researchers have tried various methods to study the anti-tumor effect of cytokines for a long time. However, due to the short half-life, poor stability, easy to lead to inflammatory storms and narrow safety treatment window of cytokines, this field has been tepid. In recent years, with the rapid development of protein engineering technology, some engineered cytokines have a significant effect in tumor immunotherapy, showing an irresistible trend of development. In this review, we will discuss the current researches of the IL-2 family and mainly focus on the application and achievements of engineered cytokines in tumor immunotherapy.


Subject(s)
Cytokines , Neoplasms , Humans , Cytokines/metabolism , Interleukin-2/therapeutic use , Immunotherapy/methods , Neoplasms/therapy
2.
Int Immunopharmacol ; 115: 109634, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36584573

ABSTRACT

Antibody or antibody-like protein drugs related to tumor immunotherapy are now widely used. Here, we describe an antibody-fusion protein drug IMAB362-mIL-21 with mouse IL-21 (mIL-21) fused into the C-terminal domain of IMAB362 (a clinical antibody drug against Claudin18.2), that we expect can achieve tumor targeting and activate local anti-tumor immune response more effectively, while reducing the systemic side effects of individual cytokines. In vitro assays comparing the fusion protein IMAB362-mIL-21 to IMAB362 and mIL-21, IMAB362-mIL-21 was able to recognize its cognate antigen Claudin18.2 and natural receptor mIL-21R with similar binding affinities, mediate equivalent ADCC activity and activate IL-21R-mediated downstream signal pathway. In in vivo assays, IMAB362-mIL-21 produced stronger anti-tumor effects compared with IMAB362 or mIL-21 or their combination at equimolar concentrations. Moreover, according to routine blood indicators, mIL-21-Fc and the combined treatment group had significant decreases (P < 0.01) in red blood cells (RBC), hemoglobin (HGB) and hematocrit (HCT), while the IMAB362-mIL-21 group did not. The above results have shown that IMAB362-mIL-21 can produce better anti-tumor effects without obvious hematological toxicity, which is sufficient to show that this kind of antibody-cytokine protein has better application value than IMAB362 or IL-21 as single drugs or in combination. Therefore, this bifunctional molecule combined tumor-targeting and immune activation effectively and has good application prospects.


Subject(s)
Neoplasms , Mice , Animals , Neoplasms/drug therapy , Interleukins , Immunotherapy , Signal Transduction , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/therapeutic use
3.
Front Immunol ; 13: 1047610, 2022.
Article in English | MEDLINE | ID: mdl-36518768

ABSTRACT

Several clinical studies demonstrate that there exist other immune checkpoints overexpressed in some PD-1 inhibitor-resistant tumor patients. Among them, Lymphocyte-activation gene 3 (LAG-3) is one of the important immune checkpoint molecules and has been clinically demonstrated to have synergistic anti-tumor effects in combination with PD-1 antibody. In this study, we designed a novel 'knob-in-hole' PD-1/LAG-3 bispecific antibody (BsAb) YG-003D3. In conclusion, the BsAb maintained the similar affinity and thermal stability to the parental antibody, and the BsAb structure can be independent of each other in the process of double-target recognition, and the recognition activity will not be affected. Moreover, the BsAb can not only target PD-1 and LAG-3 on single cell simultaneously, but also bridge the two kinds of cells expressing PD-1 and LAG-3, so as to release the 'brake system of immune checkpoints' and activate immune cells to exert anti-tumor effects more effectively. Especially in the PBMCs activation assay, YG-003D3 induced stronger IFN-γ, IL-6, and TNF-α secretion compared to anti-PD-1 or anti-LAG-3 single drug group or even combined drug group. In the tumor killing experiment of PBMC in vitro, YG-003D3 has a better ability to activate PBMC to kill tumor cells than anti-PD-1 or anti-LAG-3 single drug group or even combined drug group, and the killing rate is as high as 20%. In a humanized PD-1/LAG-3 transgenic mouse subcutaneous tumor-bearing model, YG-003D3 showed good anti-tumor activity, even better than that of the combination group at the same molar concentration. Further studies have shown that YG-003D3 could significantly alter the proportion of immune cells in the tumor microenvironment. In particular, the proportion of CD45+, CD3+ T, CD8+ T cells in tumor tissue and the proportion of CD3+ T, CD8+ T, CD4+ T cells in peripheral blood were significantly increased. These results suggest that YG-003D3 exerts a potent antitumor effect by activating the body 's immune system. In summary, the BsAb YG-003D3 has good anti-tumor activity, which is expected to become a novel drug candidate for cancer immunotherapy.


Subject(s)
Antibodies, Bispecific , Neoplasms , Mice , Animals , CD8-Positive T-Lymphocytes , Leukocytes, Mononuclear , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Lymphocyte Activation , Immunotherapy , Neoplasms/drug therapy , Tumor Microenvironment
4.
Mol Pharmacol ; 102(3): 161-171, 2022 09.
Article in English | MEDLINE | ID: mdl-35764384

ABSTRACT

Sialic acid-binding Ig-like lectin-15 is an important immunosuppressive molecule considered to be a key target in next-generation tumor immunotherapy. In this study, we screened 22 high-affinity antibodies that specifically recognize human Siglec-15 by using a large human phage antibody library, and five representative sequences were selected for further study. The results showed the binding activity of five antibodies to Siglec-15 (EC50 ranged from 0.02368 µg/mL to 0.07949 µg/mL), and in two Siglec-15-overexpressed cell lines, three antibodies had the strongest binding activity, so the two clones were discarded for further study. Subsequently, the affinity of three antibodies were measured by bio-layer interferometry technology (5-9 × 10E-09M). As the reported ligands of Siglec-15, the binding activity of Siglec-15 and sialyl-Tn, cluster of differentiation 44, myelin-associated glycoprotein, and leucine-rich repeat-containing protein 4C can be blocked by three of the antibodies. Among these, 3F1 had a competitive advantage. Then, the antibody 3F1 showed an obvious antibody-dependent cell-mediated cytotoxicity effect (EC50 was 0.85 µg/mL). Further, antibody 3F1 can reverse the inhibitory effect of Siglec-15 on lymphocyte proliferation (especially CD4+T and CD8+T) and cytokine release Interferon-γ. Given the above results, 3F1 was selected as a candidate for the in vivo pharmacodynamics study. In the tumor model of Balb/c Nude mice, 3F1 (10 mg/kg) showed certain antitumor effects [tumor growth inhibition (TGI) was 31.5%], while the combination of 3F1 (5 mg/kg) and Erbitux (5 mg/kg) showed significant antitumor effects (TGI was 48.7%) compared with the PBS group. In conclusion, novel human antibody 3F1 has antitumor activity and is expected to be an innovative candidate drug targeting Siglec-15 for tumor immunotherapy. SIGNIFICANCE STATEMENT: Siglec-15 is considered as an important target in the next generation of tumor immunotherapy. 3F1 is expected to be the most promising potential candidate for targeting Siglec-15 for cancer treatment and could provide a reference for the development of antitumor drugs.


Subject(s)
Antigens, CD , Neoplasms , Animals , Antigens, CD/metabolism , Humans , Immunoglobulins , Lectins/chemistry , Lectins/metabolism , Ligands , Membrane Proteins , Mice , Mice, Nude , Neoplasms/drug therapy
5.
Sci Rep ; 12(1): 8469, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589780

ABSTRACT

The continuous mutation of SARS-CoV-2 has presented enormous challenges to global pandemic prevention and control. Recent studies have shown evidence that the genome sequence of SARS-CoV-2 nucleocapsid proteins is relatively conserved, and their biological functions are being confirmed. There is increasing evidence that the N protein will not only provide a specific diagnostic marker but also become an effective treatment target. In this study, 2G4, which specifically recognizes the N protein, was identified by screening a human phage display library. Based on the computer-guided homology modelling and molecular docking method used, the 3-D structures for the 2G4 scFv fragment (VH-linker-VL structure, with (G4S)3 as the linker peptide in the model), SARS-CoV-2 N protein and its complex were modelled and optimized with a suitable force field. The binding mode and key residues of the 2G4 and N protein interaction were predicted, and three mutant antibodies (named 2G4-M1, 2G4-M2 and 2G4-M3) with higher affinity were designed theoretically. Using directed point mutant technology, the three mutant antibodies were prepared, and their affinity was tested. Their affinity constants of approximately 0.19 nM (2G4-M1), 0.019 nM (2G4-M2) and 0.075 nM (2G4-M3) were at least one order of magnitude lower than that of the parent antibody (3 nM; 2G4, parent antibody), as determined using a biolayer interferometry (BLI) assay. It is expected that high-affinity candidates will be used for diagnosis and even as potential therapeutic drugs for the SARS-CoV-2 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibody Affinity , Cell Surface Display Techniques , Humans , Molecular Docking Simulation , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...