Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
J Biochem Mol Toxicol ; 38(7): e23759, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39003567

ABSTRACT

Fetal growth restriction (FGR) severely affects the health outcome of newborns and represents a major cause of perinatal morbidity. The precise involvement of circCULT1 in the progression of FGR remains unclear. We performed next-generation sequencing and RT-qPCR to identify differentially expressed circRNAs in placental tissues affected by FGR by comparing them with unaffected counterparts. Edu, flow cytometry, and transwell assay were conducted to detect HTR8/SVneo cell's function in regard to cell proliferation, migration, and invasion. The interaction between circCUL1 and hsa-miR-30e-3p was assessed through dual-luciferase reporter assays, validation of the interaction between circCUL1 and ANXA1 was performed using RNA pulldown and immunoprecipitation assays. Western blot analysis was performed to evaluate protein levels of autophagy markers and components of the PI3K/AKT signaling pathway. A knockout (KO) mouse model was established for homologous mmu-circ-0001469 to assess fetal mouse growth and development indicators. Our findings revealed an upregulation of circCUL1 expression in placental tissues from patients with FGR. We found that suppression of circCUL1 increased the trophoblast cell proliferation, migration, and invasion, circCUL1 could interact with hsa-miR-30e-3p. Further, circCUL1 stimulated autophagy, modulating trophoblast cell autophagy via the ANXA1/PI3K/AKT pathway, and a notable disparity was observed, with KO mice displaying accelerated embryo development and exhibiting heavier placentas in comparison to wild-type C57BL/6 mice. By modulating the ANXA1/PI3K/AKT signaling pathway through the interaction with hsa-miR-30e-3p, circCUL1 promotes autophagy while concurrently suppressing trophoblast cell proliferation, migration, and invasion. These findings offer novel insights into potential diagnostic markers and therapeutic targets for FGR research.


Subject(s)
Autophagy , Cell Movement , Fetal Growth Retardation , MicroRNAs , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Trophoblasts , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Trophoblasts/metabolism , Trophoblasts/pathology , Proto-Oncogene Proteins c-akt/metabolism , Pregnancy , Female , Mice , Animals , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , RNA, Circular/genetics , RNA, Circular/metabolism , Mice, Knockout , Annexin A1
2.
Chemosphere ; 362: 142703, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925519

ABSTRACT

Long-term exposure to high-level ambient PM2.5 was associated with increased risks of brain disorders, while the associations remain uncertain when the exposure is lower than current air quality standards in numerous countries. This study aimed to assess the effects of PM2.5 exposure on the brain system in the population with annual mean concentrations ≤15 µg/m3. We analyzed data from 260,922 participants without preexisting brain diseases at baseline in the UK Biobank. The geographical distribution of PM2.5 in 2010 was estimated by a land use regression model and linked with individual residential address. We investigated associations of ambient PM2.5 with incident neurological (dementia, Parkinson's diseases [PD], epilepsy, and migraine) and psychiatric (major depressive disorder [MDD] and anxiety disorder) diseases through Cox proportional hazard models. We further estimated the links with brain imaging phenotypes by neuroimaging analysis. Results showed that in the population with PM2.5 concentrations ≤15 µg/m3, each interquartile range (IQR, 1.28 µg/m3) increment in PM2.5 was related to incidence risks of dementia, epilepsy, migraine, MDD, and anxiety disorder with hazard ratios of 1.08 (95% confidence interval [CI]: 1.03, 1.13), 1.12 (1.05, 1.20), 1.07 (1.00, 1.13), 1.06 (1.03, 1.09), and 1.05 (1.02, 1.08), respectively. We did not observe a significant association with PD. The association with dementia was stronger among the population with poor cardiovascular health (measured by Life's Essential 8) than the counterpart (P for interaction = 0.037). Likewise, per IQR increase was associated with specific brain imaging phenotypes, including volumes of total brain (ß = -0.036; 95% CI: -0.050, -0.022), white matter (-0.030; -0.046, -0.014), grey matter (-0.030; -0.042, -0.017), respectively. The findings suggest long-term exposure to ambient PM2.5 at low-level still has an adverse impact on the neuro-psychiatric systems. The brain-relevant epidemiological assessment suggests that each country should update the standard for ambient PM2.5 following the World Health Organization Air Quality Guidelines 2021.

3.
J Hazard Mater ; 473: 134717, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38795493

ABSTRACT

Prenatal exposure to benzotriazoles and benzothiazoles (collectively as BTs) was associated with pregnancy complications. Identifying the metabolites associated with prenatal BTs exposure may help elucidate the mechanism and characterize the exposure risk. In this prospective study of 158 pregnant women from Wuhan, China, urinary BTs were repeatedly measured across three trimesters to provide an accurate estimation of exposure during pregnancy. We conducted high-throughput targeted metabolomics with great coverage and high accuracy to characterize the urinary metabolic profile in late pregnancy. We first identified the perturbed metabolites of cocktail BTs exposure and then pinned down to the pairwise associations between individual BTs and the identified metabolites. A total of 44 metabolites were identified as perturbed biomarkers of cocktail BTs exposure based on the variable influence on projection (VIP > 1.2) score. Further pairwise associations analysis showed positive association of BTs with oxidative stress related biomarkers and negative association of BTs with neuronal function metabolites. The shared metabolic signatures among BTs in the co-occurrence network of pairwise association analysis may partially be attributed to the correlation among cocktail BTs exposure. The findings provide the potential mechanisms of BTs-associated pregnancy complications and offer insight into the health implications for prenatal BTs exposure. Furthermore, the framework we employed, which integrates both cocktail exposure and individual exposure, may illuminate future epidemiological research that seeks to incorporate exposure to mixtures and omics scale data.


Subject(s)
Benzothiazoles , Biomarkers , Maternal Exposure , Triazoles , Female , Pregnancy , Triazoles/toxicity , Humans , Adult , Biomarkers/urine , Biomarkers/metabolism , Prospective Studies , China , Metabolomics , Metabolome/drug effects
4.
Entropy (Basel) ; 26(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38785624

ABSTRACT

In unsupervised learning, clustering is a common starting point for data processing. The convex or concave fusion clustering method is a novel approach that is more stable and accurate than traditional methods such as k-means and hierarchical clustering. However, the optimization algorithm used with this method can be slowed down significantly by the complexity of the fusion penalty, which increases the computational burden. This paper introduces a random projection ADMM algorithm based on the Bernoulli distribution and develops a double random projection ADMM method for high-dimensional fusion clustering. These new approaches significantly outperform the classical ADMM algorithm due to their ability to significantly increase computational speed by reducing complexity and improving clustering accuracy by using multiple random projections under a new evaluation criterion. We also demonstrate the convergence of our new algorithm and test its performance on both simulated and real data examples.

6.
Acta Trop ; 254: 107182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479469

ABSTRACT

Organoids have emerged as a powerful tool for understanding the biology of the respiratory, digestive, nervous as well as urinary system, investigating infections, and developing new therapies. This article reviews recent progress in the development of organoid and advancements in virus research. The potential applications of these models in studying virul infections, pathogenesis, and antiviral drug discovery are discussed.


Subject(s)
Organoids , Virus Diseases , Organoids/virology , Humans , Animals , Virus Diseases/virology , Virus Diseases/drug therapy , Viruses/drug effects , Viruses/pathogenicity , Viruses/growth & development , Viruses/classification , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Discovery/methods
7.
Global Health ; 20(1): 1, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167039

ABSTRACT

The COVID-19 pandemic has revealed the contested politics of global health governance, though we still don't know enough about the dynamics of domestic pandemic responses, or about the relationship between the politics of those responses and the politics of global health governance, both of which have changed significantly in recent decades. Focusing on three cases (HIV/AIDS, SARS, and COVID-19) of cross-border infectious diseases, this article explores the trajectory of China's pandemic responses in the context of globalization. Attending to changing politics at domestic, international, and global levels, I argue that those responses have been a complex combination of China's domestic politics (e.g., priorities, institutions, leadership, and timing), its international relations (especially with the US), and its engagements with global health governance. It is concluded that the increasing divergence of pandemic responses in a time of ubiquitous global health crisis demands urgent attention to the connections (including contestations) between domestic pandemic responses and the evolvement of global health governance from a broader perspective that considers changes in geopolitics.


Subject(s)
Acquired Immunodeficiency Syndrome , COVID-19 , Humans , COVID-19/epidemiology , Pandemics/prevention & control , International Cooperation , Politics , China/epidemiology
8.
Eur J Nutr ; 63(1): 155-172, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37740812

ABSTRACT

PURPOSE: Individuals with vitamin D (VD) insufficiency have a greater tendency to develop obesity and have increased systemic inflammation. Gut microbiota are involved in the regulation of host inflammation and energy metabolism, which plays a role in the pathogenesis of obesity. Thus, we aimed to evaluate the effects of different doses of VD3 on body weight, serum lipids, inflammatory factors, and intestinal barrier function in obese mice and to explore the regulatory effect of VD3 on gut microbiota in obese mice. METHODS: Male C57BL/6 J mice received a normal chow diet (NCD, 10% fat) or high-fat diet (HFD, 60% fat) to induce obesity within 10 weeks. Then, HFD mice were supplemented with 5650, 8475, or 11,300 IU VD3/kg diet for 8 weeks. Finally, 16 s rRNA analysis was performed to analyze gut microbiota composition in cecal contents. In addition, body weight, serum lipids, inflammatory factors, and intestinal barrier function were analyzed. RESULTS: VD3 supplementation reduced body weight and the levels of TG, TC, HDL-C, TNF-α, IL-1ß and LPS, and increased ZO-1 in HFD-fed mice. Moreover, it increased α-diversity, reduced F/B ratio and altered microbiota composition by increasing relative abundance of Bacteroidetes, Proteobacteria, Desulfovibrio, Dehalobacterium, Odoribacter, and Parabacteroides and reducing relative abundance of Firmicutes and Ruminococcus. There were significant differences between HFD and NCD groups in several metabolic pathways, including endotoxin biosynthesis, tricarboxylic acid cycle, lipid synthesis and metabolism, and glycolysis. CONCLUSIONS: Low, medium, and high doses of VD3 inhibited weight gain, reduced levels of blood lipids and inflammatory factors, and improved endotoxemia and gut barrier function in obese mice. It also increased the α-diversity of gut microbiota in obese mice and reduced the relative abundance of some intestinal pathogenic bacteria, increased the relative abundance of some beneficial bacteria, and corrected the intestinal flora disorder of obese mice, with the low- and high-dose groups showing better effects than the medium-dose group.


Subject(s)
Gastrointestinal Microbiome , Noncommunicable Diseases , Male , Mice , Animals , Diet, High-Fat/adverse effects , Cholecalciferol/pharmacology , Mice, Obese , Mice, Inbred C57BL , Obesity/metabolism , Body Weight , Inflammation/complications , Lipids , Dietary Supplements
9.
PLoS Pathog ; 19(11): e1011789, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37948454

ABSTRACT

The COVID pandemic fueled by emerging SARS-CoV-2 new variants of concern remains a major global health concern, and the constantly emerging mutations present challenges to current therapeutics. The spike glycoprotein is not only essential for the initial viral entry, but is also responsible for the transmission of SARS-CoV-2 components via syncytia formation. Spike-mediated cell-cell transmission is strongly resistant to extracellular therapeutic and convalescent antibodies via an unknown mechanism. Here, we describe the antibody-mediated spike activation and syncytia formation on cells displaying the viral spike. We found that soluble antibodies against receptor binding motif (RBM) are capable of inducing the proteolytic processing of spike at both the S1/S2 and S2' cleavage sites, hence triggering ACE2-independent cell-cell fusion. Mechanistically, antibody-induced cell-cell fusion requires the shedding of S1 and exposure of the fusion peptide at the cell surface. By inhibiting S1/S2 proteolysis, we demonstrated that cell-cell fusion mediated by spike can be re-sensitized towards antibody neutralization in vitro. Lastly, we showed that cytopathic effect mediated by authentic SARS-CoV-2 infection remain unaffected by the addition of extracellular neutralization antibodies. Hence, these results unveil a novel mode of antibody evasion and provide insights for antibody selection and drug design strategies targeting the SARS-CoV-2 infected cells.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies , Cell Membrane , Spike Glycoprotein, Coronavirus/genetics
10.
Front Immunol ; 14: 1217444, 2023.
Article in English | MEDLINE | ID: mdl-37662938

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic has exerted a profound influence on humans. Increasing evidence shows that immune response is crucial in influencing the risk of infection and disease severity. Observational studies suggest an association between COVID-19 and immunoglobulin G (IgG) N-glycosylation traits, but the causal relevance of these traits in COVID-19 susceptibility and severity remains controversial. Methods: We conducted a two-sample Mendelian randomization (MR) analysis to explore the causal association between 77 IgG N-glycosylation traits and COVID-19 susceptibility, hospitalization, and severity using summary-level data from genome-wide association studies (GWAS) and applying multiple methods including inverse-variance weighting (IVW), MR Egger, and weighted median. We also used Cochran's Q statistic and leave-one-out analysis to detect heterogeneity across each single nucleotide polymorphism (SNP). Additionally, we used the MR-Egger intercept test, MR-PRESSO global test, and PhenoScanner tool to detect and remove SNPs with horizontal pleiotropy and to ensure the reliability of our results. Results: We found significant causal associations between genetically predicted IgG N-glycosylation traits and COVID-19 susceptibility, hospitalization, and severity. Specifically, we observed reduced risk of COVID-19 with the genetically predicted increased IgG N-glycan trait IGP45 (OR = 0.95, 95% CI = 0.92-0.98; FDR = 0.019). IGP22 and IGP30 were associated with a higher risk of COVID-19 hospitalization and severity. Two (IGP2 and IGP77) and five (IGP10, IGP14, IGP34, IGP36, and IGP50) IgG N-glycosylation traits were causally associated with a decreased risk of COVID-19 hospitalization and severity, respectively. Sensitivity analyses did not identify any horizontal pleiotropy. Conclusions: Our study provides evidence that genetically elevated IgG N-glycosylation traits may have a causal effect on diverse COVID-19 outcomes. Our findings have potential implications for developing targeted interventions to improve COVID-19 outcomes by modulating IgG N-glycosylation levels.


Subject(s)
COVID-19 , Humans , Glycosylation , COVID-19/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Reproducibility of Results , Immunoglobulin G
11.
Article in English | MEDLINE | ID: mdl-37422589

ABSTRACT

BACKGROUND: Epidemiological studies addressing the combined effects of exposure to chemical mixtures at different stages of pregnancy on birth size are scarce. OBJECTIVE: To evaluate the association between prenatal exposure to chemical mixtures and birth size. METHODS: Our previous study repeatedly measured the urinary concentrations of 34 chemical substances among 743 pregnant women and identified three distinct clusters of exposed population and six dominant principal components of exposed chemicals in each trimester. In this study, we assessed the associations of these exposure profiles with birth weight, birth length, and ponderal index using multivariable linear regression. RESULTS: We found that compared with women in cluster 1 (lower urinary chemical concentrations), women in cluster 2 (higher urinary concentrations of metals, benzothiazole, benzotriazole, and some phenols), and women in cluster 3 (higher urinary concentrations of phthalates) were more likely to give birth to children with higher birth length [0.23 cm (95% CI: -0.03, 0.49); 0.29 cm (95%CI: 0.03, 0.54), respectively]. This association was observed only in 1st trimester. In addition, prenatal exposure to PC3 (higher benzophenones loading) was associated with reduced birth length across pregnancy [-0.07 cm (95% CI: -0.18, 0.03) in 1st and 2nd trimester; -0.13 cm (95% CI: -0.24, -0.03) in 3rd trimester]. Exposure to PC6 (higher thallium and BPA loading in 2nd trimester) was associated with increased birth length [0.15 cm (95% CI: 0.05, 0.26)]. Compared with other outcomes, associations of both clusters and PCs with birth length were stronger, and these associations were more pronounced in boys. IMPACT STATEMENT: Exposure to multiple chemicals simultaneously, the actual exposure situation of pregnant women, was associated with birth size, indicating that chemical mixtures should be taken more seriously when studying the health effects of pollutants.

12.
Oncol Lett ; 25(6): 260, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37205919

ABSTRACT

1,4,5,6,7,8-Hexahydropyrido[4,3-d]pyrimidine (PPM) promotes apoptosis of HepG2 cells and serves a role in tumor suppression. However, the role of microRNA (miRNA) regulation in initiating apoptosis remains unclear. Therefore, the present study performed reverse transcription-quantitative PCR to investigate the association between PPM and miRNA, which demonstrated that PPM upregulated the expression of miR-26b-5p. Wound healing and Transwell assays showed that PPM inhibited the migration and invasion of HepG2 cells, and EdU staining experiments showed that PPM inhibited the proliferation of HepG2 cells. Transfection with miR-26b-5p inhibitor reversed the effects of PPM on HepG2 cells. Flow cytometry results showed that PPM promoted apoptosis of HepG2 cells by upregulating miRNA (miR)-26b-5p, and Western blotting results showed that PPM promoted the expression of apoptosis-associated protein Bax and inhibited the expression of Bcl-2 by upregulating miR-26b-5p. Using a proteomic approach combined with bioinformatics analysis, CDK8 was identified as a potential target of miR-26b-5p and was downregulated by miR-26b-5p overexpression. However, PPM induced HepG2 cell cycle arrest without the involvement of miR-26b-5p. Western blotting results showed that PPM upregulation of miR-26b-5p suppresses NF-κB/p65 signaling pathway in HepG2 cells by targeting of CDK8. The present results suggested that miR-26b-5p may function as a target gene of PPM and may serve a role in hepatocellular carcinoma treatment.

13.
Polymers (Basel) ; 15(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36679169

ABSTRACT

Polype ntafluoropropane glycidyl ether (PPFEE), a new random block hydroxyl-terminated polyfluoroether, was synthesized successfully by cationic ring-opening polymerization of 2-(2,2,3,3,3-pentafluoropropoxymethyl) oxirane, and its molecular structure was confirmed by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectrometry, and gel permeation chromatography. The PPFEE-based polyurethane elastomers featuring fluorine in their side chains were prepared using PPFEE as soft segments, polyisocyanate polyaryl polymethylene isocyanate as hard segments, and dibutyltin dilaurate as catalysts under different curing conditions. The microphase separation, mechanical performance, and thermal behavior of the elastomers were investigated by differential scanning calorimetry, uniaxial tensile test, and thermal gravimetric analysis, respectively. Based on the results, the percentage of hard segments dissolved into the soft segments of elastomers was opposite to the change in breaking strength. The PPFEE-based polyurethane elastomer cured with 20 wt% PAPI at the curing temperature of 50 °C displayed the maximum tensile elongation of 2.26 MPa with an elongation at break of nearly 150%. The increased contents of PAPI can effectively strengthen the tensile strength, and the maximum tensile elongation was 3.04 MPa with an elongation at break of nearly 90% when the content of PAPI was 26 wt%. In addition, the PPFEE-based polyurethane elastomers exhibited excellent resistance to thermal decomposition and a sharp weight loss temperature at around 371 °C. All the results demonstrated that the PPFEE may be a potential polymeric binder as one of the ingredients applied to future propellant formulations.

14.
World J Clin Cases ; 10(24): 8749-8754, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36157797

ABSTRACT

BACKGROUND: The mitochondrial respiratory chain defects have become the most common cause of neurometabolic disorders in children and adults, which can occur at any time in life, often associated with neurological dysfunction, and lead to chronic disability and premature death. Approximately one-third of patients with mitochondrial disease have biochemical defects involving multiple respiratory chain complexes, suggesting defects in protein synthesis within the mitochondria. We here report a child with VARS2 gene mutations causing mitochondrial disease. CASE SUMMARY: A girl, aged 3 years and 4 mo, had been unable to sit and crawl alone since birth, with obvious seizures and microcephaly. Brain magnetic resonance imaging showed symmetrical, flaky, long T1-weighted and low T2-weighted signals in the posterior part of the bilateral putamen with a high signal shadow. T2 fluid-attenuated inversion recovery imaging showed a slightly high signal and diffusion-weighted imaging showed an obvious high signal. Whole-exome gene sequencing revealed a compound heterozygous mutation in the VARS2 gene, c.1163(exon11)C>T and c.1940(exon20)C>T, which was derived from the parents. The child was diagnosed with combined oxidative phosphorylation deficiency type 20. CONCLUSION: In this patient, mitochondrial disorders including Leigh syndrome and MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes) were ruled out, and combined oxidative phosphorylation deficiency type 20 was diagnosed, expanding the phenotypic spectrum of the disease.

15.
Front Neurosci ; 16: 980000, 2022.
Article in English | MEDLINE | ID: mdl-36161179

ABSTRACT

SET binding protein 1 (SETBP1) is essential for human development, and pathogenic germline variants in SETBP1 lead to a recognizable developmental syndrome and variable clinical features. In this study, we assessed a patient with facial dysmorphism, intellectual disability and delayed motor development. Whole genome sequencing identified a novel de novo variation of the SETBP1 (c.2631C > A; p. S877R) gene, which is located in the SKI domain, as a likely pathogenic variant for the proband's phenotype. RNA sequencing was performed to investigate the potential molecular mechanism of the novel variation in SETBP1. In total, 77 and 38 genes were identified with aberrant expression and splicing, respectively. Moreover, the biological functions of these genes were involved in DNA/protein binding, expression regulation, and the cell cycle, which may advance our understanding of the pathogenesis of SETBP1 in vivo.

16.
Affilia ; 37(4): 701-716, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36176489

ABSTRACT

The relatively sparse literature has documented various challenges international migration poses to martial stability, yet we know little about immigrant women's experiences with marital breakdown. Drawing data from a qualitative study of Chinese economic immigrants to Canada, this article explores women's experiences of navigating the processes of this life circumstance, and of how gender-including their senses of changing gender roles in post-immigration and postmarital contexts-plays out in these trajectories. The results of this exploratory study illustrate the value of transcending dichotomous conceptions of the relationship between gender and migration, and of opening spaces in which to better understand immigrant women's increasingly diversified life trajectories and the range of barriers they encounter along the way. The study also reveals multiple opportunities for social work contributions: tackling systematic barriers to settlement, facilitating social support in the community, and recognizing individuals' diverse trajectory potentials (including the potential for this typically unwelcome event to be integrated as personal growth and transition).

17.
Front Oncol ; 12: 916375, 2022.
Article in English | MEDLINE | ID: mdl-35982964

ABSTRACT

Ovarian cancer (OC) is the third most common malignant tumor of women accompanied by alteration of systemic metabolism, yet the underlying interactions between the local OC tissue and other system biofluids remain unclear. In this study, we recruited 17 OC patients, 16 benign ovarian tumor (BOT) patients, and 14 control patients to collect biological samples including ovary plasma, urine, and hair from the same patient. The metabolic features of samples were characterized using a global and targeted metabolic profiling strategy based on Gas chromatography-mass spectrometry (GC-MS). Principal component analysis (PCA) revealed that the metabolites display obvious differences in ovary tissue, plasma, and urine between OC and non-malignant groups but not in hair samples. The metabolic alterations in OC tissue included elevated glycolysis (lactic acid) and TCA cycle intermediates (malic acid, fumaric acid) were related to energy metabolism. Furthermore, the increased levels of glutathione and polyunsaturated fatty acids (linoleic acid) together with decreased levels of saturated fatty acid (palmitic acid) were observed, which might be associated with the anti-oxidative stress capability of cancer. Furthermore, how metabolite profile changes across differential biospecimens were compared in OC patients. Plasma and urine showed a lower concentration of amino acids (alanine, aspartic acid, glutamic acid, proline, leucine, and cysteine) than the malignant ovary. Plasma exhibited the highest concentrations of fatty acids (stearic acid, EPA, and arachidonic acid), while TCA cycle intermediates (succinic acid, citric acid, and malic acid) were most concentrated in the urine. In addition, five plasma metabolites and three urine metabolites showed the best specificity and sensitivity in differentiating the OC group from the control or BOT groups (AUC > 0.90) using machine learning modeling. Overall, this study provided further insight into different specimen metabolic characteristics between OC and non-malignant disease and identified the metabolic fluctuation across ovary and biofluids.

18.
World J Clin Cases ; 10(15): 5018-5024, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35801028

ABSTRACT

BACKGROUND: This case report describes a child with Hutchinson-Gilford progeria syndrome (HGPS, OMIM: 176670) caused by LMNA (OMIM: 150330) gene mutation, and we have previously analyzed the clinical manifestations and imaging characteristics of this case. After 1-year treatment and follow-up, we focus on analyzing the changes in the clinical manifestations and genetic diagnosis of the patient. CASE SUMMARY: In April 2020, a 2-year-old boy with HGPS was found to have an abnormal appearance, and growth and development lagged behind those of children of the same age. The child's weight did not increase normally, the veins of the head were clearly visible, and he had shallow skin color and sparse yellow hair. Peripheral blood DNA samples obtained from the patient and his parents were sequenced using high-throughput whole-exosome sequencing, which was verified by Sanger sequencing. The results showed that there was a synonymous heterozygous mutation of C.1824 C>T (P. G608G) in the LMNA gene. CONCLUSION: Mutation of the LMNA gene provides a molecular basis for diagnosis of HGPS and genetic counseling of the family.

19.
Sci Total Environ ; 838(Pt 2): 155998, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35588816

ABSTRACT

People are extensively exposed to benzotriazoles (BTRs) and benzothiazoles (BTHs) derivatives, which are environmental pollutants that may possess endocrine-disrupting potential; however, no epidemiological evidence is available on the associations of BTRs and BTHs with estrogens and androgens. This study aimed at investigating the associations of BTRs and BTHs with estrogens and androgens among pregnant women. Based on a prospective cohort study, we included 459 pregnant women who donated a complete serial of urine samples at each trimester and had repeated measurements of four BTRs, four BTHs, three estrogens (estrone, 17ß-estradiol, and estrio), and two androgens (dehydroepiandrosterone and testosterone) in the urine samples. Associations of repeatedly measured BTRs and BTHs with maternal urinary estrogens and androgens were analyzed, and the cross-sectional associations were also analyzed. Tolyltriazole (TTR) (≥59.3%) and benzothiazole (BTH) (≥93.5%) had the highest detection rate among the BTRs and BTHs, respectively. Repeated measurement analysis and cross-sectional analysis consistently found the target BTRs and BTHs were positively associated with 17ß-estradiol, estriol, and testosterone, while the trend of the associations with estrone and dehydroepiandrosterone was inconsistent. Among the positive associations with 17ß-estradiol, estriol, and testosterone, the percent of change in estriol associated with TTR was the most prominent [28.5% (95% confidential interval: 24.2%, 32.9%) for each doubling in TTR]. The significant associations with estrone, estriol, testosterone, and dehydroepiandrosterone were stronger among pregnant women who gave birth to a boy than those who gave birth to a girl. These findings add epidemiological evidence on the endocrine-disrupting potential of BTRs and BTHs and highlight the importance of focusing on the health outcomes of BTRs and BTHs related to disturbed estrogens and androgens. Future studies are needed to validate these findings and explore the underlying mechanisms.


Subject(s)
Androgens , Pregnant Women , Benzothiazoles/analysis , Cohort Studies , Cross-Sectional Studies , Dehydroepiandrosterone , Estradiol , Estriol , Estrogens , Estrone , Female , Humans , Male , Pregnancy , Prospective Studies , Testosterone , Triazoles
20.
J Biopharm Stat ; 32(6): 969-985, 2022 11 02.
Article in English | MEDLINE | ID: mdl-35576472

ABSTRACT

Personalized medicine has gained much attention in the past decades, and identifying the effects of factors is essential for personalized preventions and treatments. Hypertension is a major modifiable risk factor for cardiovascular disease and is influenced by complex factors. In order to decrease the incidence of hypertension effectively, the subjects should be divided into subgroups according to their characteristics. In this study, we proposed to use a heterogeneous logistic regression combined with a concave fusion penalty to analyze the population-based survey data, including common influencing factors of hypertension. The analytic steps include: (1) identifying the most important predictor; (2) estimating subgroup-based heterogeneous effects. In the present context of primary hypertension data, the modeling results showed that the calculated prediction accuracy under our method was greater than 99%, while zero under the classical logistic regression. The findings could provide a practical guide for further individualized measures implementation.


Subject(s)
Cardiovascular Diseases , Hypertension , Humans , Logistic Models , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...