Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Biochem Genet ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557813

ABSTRACT

Cisplatin (DDP) is used for the clinical management of triple-negative breast cancer (TNBC). However, the development of drug resistance limits its therapeutic efficacy. Circular RNAs (circRNAs) are known to be involved in tumor DDP resistance. In our previous study, we reported that circ_0007823 expression is downregulated and correlated with adverse prognosis in TNBC. However, its association with DDP resistance remains unclear. This study aimed to determine the role of circ_0007823 and miR-182-5p in DDP-resistant TNBC and explore the underlying mechanisms. First, expression profiles circ_0007823, microRNA (miR)-182-5p, and forkhead box O1 (FOXO1) in TNBC cells were determined. Additionally, biological characteristics of cells, including apoptosis, cell cycle, proliferation, and migration, were analyzed using various assays. Luciferase reporter and rescue assays were used to determine the correlations among circ_0007823, miR-182-5p, and FOXO1 expression. MiR-182-5p was overexpressed in DDP-resistant TNBC cells. MiR-182-5p knockdown suppressed the invasiveness and increased the apoptosis of drug-resistant cells, contributing to G1 arrest and S phase reduction. Mechanistically, circ_0007823 targeted miR-182-5p, and its overexpression drastically reduced the promotional effects of the miR-182-5p mimic on the aggression and transfer ability of drug-resistant cells. Furthermore, FOXO1 overexpression increased the sensitivity of cells to DDP and reduced their malignant progression. Therefore, FOXO1 was established as the downstream target of miR-182-5p that may be used to treat DDP-resistant TNBC. In summary, circ_0007823 overexpression attenuated DDP resistance in TNBC via the miR-182-5p-FOXO1 axis, indicating the therapeutic potential of circ_0007823 DDP-resistant TNBC treatment.

2.
Article in English | MEDLINE | ID: mdl-37873520

ABSTRACT

Background: This study aimed to analyze the specific expression of hsa_circ_0007823 in triple-negative breast cancer (TNBC) and explore the roles and related molecular mechanisms of hsa_circ_0007823 in TNBC. Materials and Methods: Relative hsa_circ_0007823 levels in TNBC tissues and cell lines were examined by reverse transcription-quantitative polymerase chain reaction. The value of hsa_circ_0007823 levels was evaluated in patients' clinicopathological characteristics and prognostic prediction. A dual-luciferase reporter assay was used to determine the relationship between hsa_circ_0007823, miR-182-5p, and FOXO1. The effect of circ_0007823 overexpression on the growth of TNBC cells was investigated in vitro and in vivo. Results: Lower levels of hsa_circ_0007823 were found in TNBC tissues and cell lines and were closely associated with lymph node metastasis, poorer overall and disease-free survival rates. MiR-182-5p was significantly up-regulated, whereas FOXO1 was down-regulated in TNBC cell lines. The miR-182-5p inhibition up-regulated FOXO1 in TNBC cells. Dual-luciferase reporter assays showed that hsa_circ_0007823, miR-182-5p, and FOXO1 interacted with each other. Overexpression of circ_0007823 significantly inhibited the viability, migration, and invasion of TNBC cell lines, but promoted apoptosis. In vivo experiments showed that circ_0007823 overexpression inhibited tumor growth and down-regulated miR-182-5p and up-regulated FOXO1. Conclusion: Hsa_circ_0007823 overexpression could suppress the growth, invasion, and migration of TNBC cells, and inhibit tumor growth by regulating miR-182-5p/FOXO1.

4.
Sheng Wu Gong Cheng Xue Bao ; 35(5): 857-870, 2019 May 25.
Article in Chinese | MEDLINE | ID: mdl-31223004

ABSTRACT

To investigate the effects of genistein (Gen) on the biosynthesis of N-glycolylneuraminic acid (Neu5Gc) in rats, 80 4-week-old male SD rats were randomly equally into the control and genistein groups. The rats of control and genistein groups were fed 5% ethanol and 300 mg/(kg·d) genistein respectively by gavage. The contents of Neu5Gc in hind leg muscle, kidney and liver tissues of rats were measured by using high performance liquid chromatography coupled with fluorescence detector (HPLC/FLD), and the mechanism of inhibition of Neu5Gc synthesis was investigated by using the molecular docking of Gen and sialyltransferase. On the 15th day, the content of Neu5Gc in hind leg muscle and liver tissues decreased 13.77% and 15.45%, respectively, and there was no significant change in the content of Neu5Gc in kidney tissues. On the 30th day, the content of Neu5Gc in liver tissues decreased 13.35%, however, there was no significant change in the content of Neu5Gc in kidney tissues and Neu5Gc was not detected in hind leg muscle. The content of Neu5Gc in hind leg muscle, kidney and liver tissues decreased respectively 32.65%, 32.78%, 16.80% and 12.72%, 11.42%, 12.30% while rats fed on the 45th and the 60th days. Genistein has formed the hydrogen bond with sialyltransferase activity site residues His319, Ser151, Gly293, Thr328 and formed a hydrophobic interactions with the residues His302, His301, Trp300, Ser271, Phe292, Thr328, Ser325 and Ile274. The results of molecular docking indicated that the weak intermolecular interaction was the main cause of genistein inhibiting sialyltransferase activity. The research results provided an experimental basis for the subsequent reduction of Neu5Gc in red meat before slaughter.


Subject(s)
Gene Expression Regulation, Enzymologic , Genistein , Neuraminic Acids , Transferases , Animals , Gene Expression Regulation, Enzymologic/drug effects , Genistein/pharmacology , Male , Molecular Docking Simulation , Neuraminic Acids/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Transferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...