Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Viruses ; 16(4)2024 04 16.
Article in English | MEDLINE | ID: mdl-38675960

ABSTRACT

Reactivation and infection with cytomegalovirus (CMV) are frequently observed in recipients of solid organ transplants, bone marrow transplants, and individuals with HIV infection. This presents an increasing risk of allograft rejection, opportunistic infection, graft failure, and patient mortality. Among immunocompromised hosts, interstitial pneumonia is the most critical clinical manifestation of CMV infection. Recent studies have demonstrated the potential therapeutic benefits of exosomes derived from mesenchymal stem cells (MSC-exos) in preclinical models of acute lung injury, including pneumonia, ARDS, and sepsis. However, the role of MSC-exos in the pathogenesis of infectious viral diseases, such as CMV pneumonia, remains unclear. In a mouse model of murine CMV-induced pneumonia, we observed that intravenous administration of mouse MSC (mMSC)-exos reduced lung damage, decreased the hyperinflammatory response, and shifted macrophage polarization from the M1 to the M2 phenotype. Treatment with mMSC-exos also significantly reduced the infiltration of inflammatory cells and pulmonary fibrosis. Furthermore, in vitro studies revealed that mMSC-exos reversed the hyperinflammatory phenotype of bone marrow-derived macrophages infected with murine CMV. Mechanistically, mMSC-exos treatment decreased activation of the NF-κB/NLRP3 signaling pathway both in vivo and in vitro. In summary, our findings indicate that mMSC-exo treatment is effective in severe CMV pneumonia by reducing lung inflammation and fibrosis through the NF-κB/NLRP3 signaling pathway, thus providing promising therapeutic potential for clinical CMV infection.


Subject(s)
Disease Models, Animal , Exosomes , Mesenchymal Stem Cells , Muromegalovirus , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , Animals , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Muromegalovirus/physiology , Mice, Inbred C57BL , Macrophages/immunology , Cytomegalovirus Infections/therapy , Cytomegalovirus Infections/virology , Lung/virology , Lung/pathology , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Herpesviridae Infections/therapy , Herpesviridae Infections/virology , Herpesviridae Infections/immunology , Pneumonia/therapy , Pneumonia/virology
3.
J Virol ; 97(5): e0031323, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37097169

ABSTRACT

Human cytomegalovirus (HCMV) is a leading cause of congenital birth defects. Though the underlying mechanisms remain poorly characterized, mouse models of congenital CMV infection have demonstrated that the neuronal migration process is damaged. In this study, we evaluated the effects of HCMV infection on connexin 43 (Cx43), a crucial adhesion molecule mediating neuronal migration. We show in multiple cellular models that HCMV infection downregulated Cx43 posttranslationally. Further analysis identified the immediate early protein IE1 as the viral protein responsible for the reduction of Cx43. IE1 was found to bind the Cx43 C terminus and promote Cx43 degradation through the ubiquitin-proteasome pathway. Deletion of the Cx43-binding site in IE1 rendered it incapable of inducing Cx43 degradation. We validated the IE1-induced loss of Cx43 in vivo by introducing IE1 into the fetal mouse brain. Noteworthily, ectopic IE1 expression induced cortical atrophy and neuronal migration defects. Several lines of evidence suggest that these damages result from decreased Cx43, and restoration of Cx43 levels partially rescued IE1-induced interruption of neuronal migration. Taken together, the results of our investigation reveal a novel mechanism of HCMV-induced neural maldevelopment and identify a potential intervention target. IMPORTANCE Congenital CMV (cCMV) infection causes neurological sequelae in newborns. Recent studies of cCMV pathogenesis in animal models reveal ventriculomegaly and cortical atrophy associated with impaired neural progenitor cell (NPC) proliferation and migration. In this study, we investigated the mechanisms underlying these NPC abnormalities. We show that Cx43, a critical adhesion molecule mediating NPC migration, is downregulated by HCMV infection in vitro and HCMV-IE1 in vivo. We provide evidence that IE1 interacts with the C terminus of Cx43 to promote its ubiquitination and consequent degradation through the proteasome. Moreover, we demonstrate that introducing IE1 into mouse fetal brains led to neuronal migration defects, which was associated with Cx43 reduction. Deletion of the Cx43-binding region in IE1 or ectopic expression of Cx43 rescued the IE1-induced migration defects in vivo. Our study provides insight into how cCMV infection impairs neuronal migration and reveals a target for therapeutic interventions.


Subject(s)
Connexin 43 , Cytomegalovirus Infections , Cytomegalovirus , Immediate-Early Proteins , Animals , Humans , Infant, Newborn , Mice , Connexin 43/genetics , Connexin 43/metabolism , Cytomegalovirus/physiology , Cytomegalovirus Infections/metabolism , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism
4.
PLoS Pathog ; 19(4): e1011316, 2023 04.
Article in English | MEDLINE | ID: mdl-37058447

ABSTRACT

The presence of human cytomegalovirus (HCMV) in glioblastoma (GBM) and improved outcomes of GBM patients receiving therapies targeting the virus have implicated HCMV in GBM progression. However, a unifying mechanism that accounts for the contribution of HCMV to the malignant phenotype of GBM remains incompletely defined. Here we have identified SOX2, a marker of glioma stem cells (GSCs), as a key determinant of HCMV gene expression in gliomas. Our studies demonstrated that SOX2 downregulated promyelocytic leukemia (PML) and Sp100 and consequently facilitated viral gene expression by decreasing the amount of PML nuclear bodies in HCMV-infected glioma cells. Conversely, the expression of PML antagonized the effects of SOX2 on HCMV gene expression. Furthermore, this regulation of SOX2 on HCMV infection was demonstrated in a neurosphere assay of GSCs and in a murine xenograft model utilizing xenografts from patient-derived glioma tissue. In both cases, SOX2 overexpression facilitated the growth of neurospheres and xenografts implanted in immunodeficient mice. Lastly, the expression of SOX2 and HCMV immediate early 1 (IE1) protein could be correlated in tissues from glioma patients, and interestingly, elevated levels of SOX2 and IE1 were predictive of a worse clinical outcome. These studies argue that HCMV gene expression in gliomas is regulated by SOX2 through its regulation of PML expression and that targeting molecules in this SOX2-PML pathway could identify therapies for glioma treatment.


Subject(s)
Glioma , Immediate-Early Proteins , Animals , Humans , Mice , Cytomegalovirus/physiology , Down-Regulation , Gene Expression , Glioma/genetics , Glioma/pathology , Immediate-Early Proteins/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
PLoS Pathog ; 19(2): e1011166, 2023 02.
Article in English | MEDLINE | ID: mdl-36753521

ABSTRACT

Congenital human cytomegalovirus (HCMV) infection causes severe damage to the fetal brain, and the underlying mechanisms remain elusive. Cytokine signaling is delicately controlled in the fetal central nervous system to ensure proper development. Here we show that suppressor of cytokine signaling 3 (SOCS3), a negative feedback regulator of the IL-6 cytokine family signaling, was upregulated during HCMV infection in primary neural progenitor cells (NPCs) with a biphasic expression pattern. From viral protein screening, pUL97 emerged as the viral factor responsible for prolonged SOCS3 upregulation. Further, by proteomic analysis of the pUL97-interacting host proteins, regulatory factor X 7 (RFX7) was identified as the transcription factor responsible for the regulation. Depletion of either pUL97 or RFX7 prevented the HCMV-induced SOCS3 upregulation in NPCs. With a promoter-luciferase activity assay, we demonstrated that the pUL97 kinase activity and RFX7 were required for SOCS3 upregulation. Moreover, the RFX7 phosphorylation level was increased by either UL97-expressing or HCMV-infection in NPCs, suggesting that pUL97 induces RFX7 phosphorylation to drive SOCS3 transcription. We further revealed that elevated SOCS3 expression impaired NPC proliferation and migration in vitro and caused NPCs migration defects in vivo. Taken together, these findings uncover a novel regulatory mechanism of sustained SOCS3 expression in HCMV-infected NPCs, which perturbs IL-6 cytokine family signaling, leads to NPCs proliferation and migration defects, and consequently affects fetal brain development.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Cytomegalovirus/physiology , Interleukin-6/metabolism , Proteomics , Transcription Factors/metabolism , Stem Cells , Suppressor of Cytokine Signaling 3 Protein/metabolism
6.
J Med Virol ; 94(11): 5492-5506, 2022 11.
Article in English | MEDLINE | ID: mdl-35879101

ABSTRACT

During the long coevolution of human cytomegalovirus (HCMV) and humans, the host has formed a defense system of multiple layers to eradicate the invader, and the virus has developed various strategies to evade host surveillance programs. The intrinsic immunity primarily orchestrated by promyelocytic leukemia (PML) nuclear bodies (PML-NBs) represents the first line of defense against HCMV infection. Here, we demonstrate that microrchidia family CW-type zinc finger 3 (MORC3), a PML-NBs component, is a restriction factor targeting HCMV infection. We show that depletion of MORC3 through knockdown by RNA interference or knockout by CRISPR-Cas9 augmented immediate-early protein 1 (IE1) gene expression and subsequent viral replication, and overexpressing MORC3 inhibited HCMV replication by suppressing IE1 gene expression. To relief the restriction, HCMV induces transient reduction of MORC3 protein level via the ubiquitin-proteasome pathway during the immediate-early to early stage. However, MORC3 transcription is upregulated, and the protein level recovers in the late stages. Further analyses with temporal-controlled MORC3 expression and the major immediate-early promoter (MIEP)-based reporters show that MORC3 suppresses MIEP activity and consequent IE1 expression with the assistance of PML. Taken together, our data reveal that HCMV enforces temporary loss of MORC3 to evade its repression against the initiation of immediate-early gene expression.


Subject(s)
Cytomegalovirus Infections , Immediate-Early Proteins , Adenosine Triphosphatases/metabolism , Cytomegalovirus/genetics , DNA-Binding Proteins/metabolism , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Promyelocytic Leukemia Protein/genetics , Promyelocytic Leukemia Protein/metabolism , Virus Replication
7.
Microbiol Spectr ; 10(3): e0186421, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35467404

ABSTRACT

Autism spectrum disorder (ASD), a highly hereditary and heterogeneous neurodevelopmental disorder, is influenced by genetic and environmental factors. Tuberous sclerosis complex (TSC) is a common syndrome associated with ASD. Cytomegalovirus (CMV) infection is an environmental risk factor for ASD. The similarities in pathological and mechanistic pathways of TSC and CMV intrigued us to investigate whether CMV and TSC interacted in ASD's occurrence. We detected CMV IgG seroprevalence of 308 TSC patients from our prospective cohort (September 2011 to March 2021) and 93 healthy children by magnetic particle indirect chemiluminescence immunoassay. A total of 206 TSC patients enrolled were divided into ASD and non-ASD groups, and the relationship between ASD and CMV seroprevalence was analyzed. Nested PCR and Western blot were used to detect CMV DNAs and proteins in cortical malformations of seven TSC patients with and without ASD. No difference was found in CMV seroprevalence between TSC patients and healthy children (74.0% versus 72.0%, P = 0.704). Univariate analysis showed the seroprevalence in TSC patients with ASD was higher than that in TSC patients without ASD (89.2% versus 75.1%, P = 0.063), and multifactorial analysis showed that CMV seroprevalence was a risk factor for ASD in TSC patients (OR = 3.976, 95% CI = 1.093 to 14.454). Moreover, CMV was more likely to be detected in the cortical malformations in TSC patients with ASD but not in those without ASD. The findings demonstrated that CMV may increase the susceptibility of TSC to ASD. IMPORTANCE CMV is an environmental risk factor for ASD, but its role in syndromic autism with known genetic etiology has been rarely studied. The pathogenesis of ASD is related to the interaction between environmental and genetic factors. This study demonstrated that CMV can contribute to the occurrence of ASD related to TSC, a common genetic syndrome associated with ASD. Our findings provided support for the theory of gene-environment interaction (G × E) in pathogenesis of ASD and a new perspective for the prevention and therapy for TSC related ASD.


Subject(s)
Autism Spectrum Disorder , Cytomegalovirus Infections , Tuberous Sclerosis , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/etiology , Child , Cytomegalovirus/genetics , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/epidemiology , Humans , Prospective Studies , Seroepidemiologic Studies , Tuberous Sclerosis/complications , Tuberous Sclerosis/epidemiology , Tuberous Sclerosis/genetics
8.
JCI Insight ; 7(1)2022 01 11.
Article in English | MEDLINE | ID: mdl-35014624

ABSTRACT

Congenital cytomegalovirus (cCMV) infection is the leading infectious cause of neurodevelopmental disorders. However, the neuropathogenesis remains largely elusive due to a lack of informative animal models. In this study, we developed a congenital murine CMV (cMCMV) infection mouse model with high survival rate and long survival period that allowed long-term follow-up study of neurodevelopmental disorders. This model involves in utero intracranial injection and mimics many reported clinical manifestations of cCMV infection in infants, including growth restriction, hearing loss, and impaired cognitive and learning-memory abilities. We observed that abnormalities in MRI/CT neuroimaging were consistent with brain hemorrhage and loss of brain parenchyma, which was confirmed by pathological analysis. Neuropathological findings included ventriculomegaly and cortical atrophy associated with impaired proliferation and migration of neural progenitor cells in the developing brain at both embryonic and postnatal stages. Robust inflammatory responses during infection were shown by elevated inflammatory cytokine levels, leukocyte infiltration, and activation of microglia and astrocytes in the brain. Pathological analyses and CT neuroimaging revealed brain calcifications induced by cMCMV infection and cell death via pyroptosis. Furthermore, antiviral treatment with ganciclovir significantly improved neurological functions and mitigated brain damage as shown by CT neuroimaging. These results demonstrate that this model is suitable for investigation of mechanisms of infection-induced brain damage and long-term studies of neurodevelopmental disorders, including the development of interventions to limit CNS damage associated with cCMV infection.


Subject(s)
Cytomegalovirus Infections , Disease Models, Animal , Neuroimaging , Animals , Cytomegalovirus Infections/congenital , Cytomegalovirus Infections/diagnostic imaging , Cytomegalovirus Infections/physiopathology , Cytomegalovirus Infections/therapy , Female , Follow-Up Studies , Mice , Mice, Inbred ICR , Pregnancy
9.
J Virol ; 96(5): e0182721, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35020472

ABSTRACT

Human cytomegalovirus (HCMV) has a large (∼235 kb) genome with more than 200 predicted open reading frames that exploits numerous cellular factors to facilitate its replication. A key feature of HCMV-infected cells is the emergence of a distinctive membranous cytoplasmic compartment termed the virion assembly compartment (vAC). Here, we report that host protein WD repeat domain 11 (WDR11) plays a key role in vAC formation and virion morphogenesis. We found that WDR11 was upregulated at both mRNA and protein levels during HCMV infection. At the late stage of HCMV replication, WDR11 relocated to the vAC and colocalized with markers of the trans-Golgi network (TGN) and vAC. Depletion of WDR11 hindered HCMV-induced membrane reorganization of the Golgi and TGN, altered vAC formation, and impaired HCMV secondary envelopment and virion morphogenesis. Further, motifs critical for the localization of WDR11 in TGN were identified by alanine-scanning mutagenesis. Mutation of these motifs led to WDR11 mislocation outside the TGN and loss of vAC formation. Taken together, these data indicate that host protein WDR11 is required for efficient viral replication at the stage of virion assembly, possibly by facilitating the remodeling of the endomembrane system for vAC formation and virion morphogenesis. IMPORTANCE During the late phase of human cytomegalovirus (HCMV) infection, the endomembrane system is dramatically reorganized, resulting in the formation of a unique structure termed the virion assembly compartment (vAC), which is critical for the assembly of infectious virions. The mechanism of HCMV-induced vAC formation is still not fully understood. In this report, we identified a host factor, WDR11, that plays an important role in vAC formation. Our findings argue that WDR11 contributes to the relocation of the Golgi and trans-Golgi network to the vAC, a membrane reorganization process that appears to be required for efficient virion maturation. The present work provides new insights into the vAC formation and HCMV virion morphogenesis and a potential novel target for antiviral treatment.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Host Microbial Interactions , WD40 Repeats , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , Cytomegalovirus Infections/physiopathology , Cytomegalovirus Infections/virology , Humans , Morphogenesis , Virion/metabolism , Virus Assembly/genetics , Virus Replication/genetics , WD40 Repeats/genetics , trans-Golgi Network/metabolism
10.
Ocul Immunol Inflamm ; 30(4): 809-820, 2022 May 19.
Article in English | MEDLINE | ID: mdl-33226275

ABSTRACT

PURPOSES: To understand the pathogenesis in rat corneal endothelial cells (RCECs) induced by murine cytomegalovirus infection in vitro and in vivo. METHODS: In vitro, cultured RCECs were infected with murine cytomegalovirus strain K181-eGFP (MCMV-eGFP). In vivo, experimental rats received intracameral injection of MCMV-eGFP. Replicating viruses and morphology change of RCECs in vivo were evaluated at several time points. RESULTS: In vitro, RCECs became necrosis at 6hpi. MCMV-eGFP began replicating at 12hpi. In vivo, the inflammatory reactions appeared at 12hpi, peaked at 72hpi and gradually subsided. Replicating MCMV-eGFP appeared in RCECs in vivo from 24hpi to 72hpi. RCECs enlarged after 12hpi and capsids in the nuclei were visible at 72hpi. A monocyte was found on a corneal endothelium at 120hpi. CONCLUSIONS: RCECs were sensitive to MCMV in vitro. Replication of MCMV-eGFP in vivo began at 24hpi and ended after 72hpi, later than the inflammatory reactions.


Subject(s)
Cytomegalovirus Infections , Muromegalovirus , Animals , Endothelial Cells , Endothelium, Corneal , Epithelial Cells , Mice , Rats
11.
Viruses ; 13(4)2021 04 06.
Article in English | MEDLINE | ID: mdl-33917368

ABSTRACT

Hearing loss is one of the most prevalent sensory disabilities worldwide with huge social and economic burdens. The leading cause of sensorineural hearing loss (SNHL) in children is congenital cytomegalovirus (CMV) infection. Though the implementation of universal screening and early intervention such as antiviral or anti-inflammatory ameliorate the severity of CMV-associated diseases, direct and targeted therapeutics is still seriously lacking. The major hurdle for it is that the mechanism of CMV induced SNHL has not yet been well understood. In this review, we focus on the impact of CMV infection on the key players in inner ear development including the Wnt and Notch signaling pathways. Investigations on these interactions may gain new insights into viral pathogenesis and reveal novel targets for therapy.


Subject(s)
Cytomegalovirus Infections/complications , Cytomegalovirus/pathogenicity , Gene Expression Regulation , Hearing Loss, Sensorineural/virology , Receptors, Notch/genetics , Signal Transduction , Wnt Proteins/genetics , Animals , Cytomegalovirus/genetics , Humans , Mice , Receptors, Notch/metabolism , Wnt Proteins/metabolism
12.
Front Microbiol ; 9: 1067, 2018.
Article in English | MEDLINE | ID: mdl-29922247

ABSTRACT

Zika virus (ZIKV) infection is associated with severe neurological defects in fetuses and newborns, such as microcephaly. However, the underlying mechanisms remain to be elucidated. In this study, proteomic analysis on ZIKV-infected primary human fetal neural progenitor cells (NPCs) revealed that virus infection altered levels of cellular proteins involved in NPC proliferation, differentiation and migration. The transcriptional levels of some of the altered targets were also confirmed by qRT-PCR. Among the altered proteins, doublecortin (DCX) plays an important role in NPC differentiation and migration. Results showed that ZIKV infection downregulated DCX, at both mRNA and protein levels, as early as 1 day post infection (1 dpi), and lasted throughout the virus replication cycle (4 days). The downregulation of DCX was also observed in a ZIKV-infected fetal mouse brain model, which displayed decreased body weight, brain size and weight, as well as defective cortex structure. By screening the ten viral proteins of ZIKV, we found that both the expression of NS4A and NS5 were correlated with the downregulation of both mRNA and protein levels of DCX in NPCs. These data suggest that DCX is modulated following infection of the brain by ZIKV. How these observed changes of DCX expression translate in the pathological consequences of ZIKV infection and if other cellular proteins are equally involved remains to be investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...