Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Physiol Biochem ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951427

ABSTRACT

The metabotropic glutamate receptor (mGluR, GRM) family is involved in multiple signaling pathways and regulates neurotransmitter release. However, the evolutionary history, distribution, and function of the mGluRs family in lampreys have not been determined. Therefore, we identified the mGluRs gene family in the genome of Lethenteron reissneri, which has been conserved throughout vertebrate evolution. We confirmed that Lr-GRM3, Lr-GRM5, and Lr-GRM7 encode three types of mGluRs in lamprey. Additionally, we investigated the distribution of Lr-GRM3 within this species by qPCR and Western blotting. Furthermore, we conducted RNA sequencing to investigate the molecular function of Lr-GRM3 in lamprey. Our gene expression profile revealed that, similar to that in jawed vertebrates, Lr-GRM3 participates in multiple signal transduction pathways and influences synaptic excitability in lampreys. Moreover, it also affects intestinal motility and the inflammatory response in lampreys. This study not only enhances the understanding of mGluRs' gene evolution but also highlights the conservation of GRM3's role in signal transduction while expanding our knowledge of its functions specifically within lampreys. In summary, our experimental findings provide valuable insights for studying both the evolution and functionality of the mGluRs family.

2.
Int J Mol Sci ; 25(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38203782

ABSTRACT

At present, there is a research gap concerning the specific functions and mechanisms of the Notch gene family and its signaling pathway in jawless vertebrates. In this study, we identified a Notch1 homologue (Lr. Notch1) in the Lethenteron reissneri database. Through bioinformatics analysis, we identified Lr. Notch1 as the likely common ancestor gene of the Notch gene family in higher vertebrates, indicating a high degree of conservation in the Notch gene family and its signaling pathways. To validate the biological function of Lr. Notch1, we conducted targeted silencing of Lr. Notch1 in L. reissneri and analyzed the resultant gene expression profile before and after silencing using transcriptome analysis. Our findings revealed that the silencing of Lr. Notch1 resulted in differential expression of pathways and genes associated with signal transduction, immune regulation, and metabolic regulation, mirroring the biological function of the Notch signaling pathway in higher vertebrates. This article systematically elucidated the origin and evolution of the Notch gene family while also validating the biological function of Lr. Notch1. These insights offer valuable clues for understanding the evolution of the Notch signaling pathway and establish a foundation for future research on the origin of the Notch signaling pathway, as well as its implications in human diseases and immunomodulation.


Subject(s)
Computational Biology , Gene Expression Profiling , Humans , Animals , Phylogeny , Databases, Factual , Immunomodulation , Receptors, Notch
SELECTION OF CITATIONS
SEARCH DETAIL
...