Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Oncol Lett ; 15(5): 7981-7986, 2018 May.
Article in English | MEDLINE | ID: mdl-29849803

ABSTRACT

The present study aimed to observe the effects of sulindac sulfide on the proliferation and apoptosis of human breast cancer cells MCF-7, and to explore the potential underlying molecular mechanism. The inhibitory ratio was detected using a cell counting kit-8 assay. The changes in cell cycle distribution were assessed using flow cytometry (FCM). Furthermore, the changes in cell apoptosis rates were detected by Hoechst 33258 staining and FCM coupled with Annexin V-FITC/propidium iodide (PI) staining. In addition, the protein expression was detected using western blotting. Sulindac sulfide was able to inhibit the proliferation of breast cancer in a dose- and time-dependent manner. In addition, sulindac sulfide altered the cell cycle of breast cancer cells. The results of Hoechst 33258 staining and FCM coupled with Annexin V-FITC/PI staining demonstrated that sulindac sulfide could significantly induce the apoptosis of MCF-7 cells in a dose-dependent, and time-dependent manner. The western blot analysis demonstrated the protein expression of Bcl-2 was downregulated, and Bax and cleaved caspase-3 were upregulated. The results of the present study suggest that sulindac sulfide can inhibit the proliferation and induce the apoptosis of MCF-7 cells.

2.
Inflamm Res ; 65(8): 603-12, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27043920

ABSTRACT

OBJECTIVE: Baicalin, a flavonoid compound purified from the dry roots of Scutellaria baicalensis Georgi, has generally been used for the treatment of various allergic diseases. However, there is little information about the anti-inflammatory effects of baicalin for allergic rhinitis. This study aims to investigate the anti-allergic effect of baicalin on allergic response in ovalbumin (OVA)-induced allergic rhinitis guinea pigs and lipopolysaccharide (LPS)-stimulated human mast cells. METHODS: Using in vivo models, we evaluated the effect of baicalin on allergic rhinitis symptoms via recording the number of nasal rubs and sneezes. The levels of histamine, OVA-specific immunoglobulin E(IgE), eosinophil cationic protein (ECP) and inflammatory cytokines were measured using enzyme-linked immunosorbent assay (ELISA). The histological changes of nasal mucosa were observed by light microscope after HE staining. In vitro, the release of histamine and ß-hexosaminidase of compound 48/80-induced human mast cells were measured by ELISA and PNP-NAG colorimetry, respectively. The productions of inflammatory cytokines of LPS-stimulated human mast cells were determined using ELISA. Western blot was used to test the protein expression of JAK2, p-JAK2, STAT5, p-STAT5, IKKß, p-IKKß, IκBα, p-IκBα and NF-κB (p65) of LPS-stimulated human mast cells. RESULTS: The oral administration of baicalin at doses of 50 and 200 mg/kg improved allergic rhinitis symptoms and the histological changes of nasal mucosa and decreased the serum levels of histamine, ECP, interleukin (IL)-1ß, IL-6, IL-8, tumor necrosis factor (TNF)-α and OVA-specific IgE in OVA-induced allergic rhinitis guinea pigs. In vitro, baicalin suppressed the release of histamine and ß-hexosaminidase in compound 48/80-induced human mast cells. In addition, baicalin also inhibited the productions of inflammatory cytokines such as IL-1ß, IL-6, IL-8 and TNF-α and suppressed the phosphorylation of JAK2, STAT5, IKKß, IκBα and the nuclear translocation of NF-κB (p65) subunit in LPS-stimulated human mast cells. CONCLUSIONS: These results suggest that baicalin can effectively prevent allergic response in OVA-induced allergic rhinitis guinea pigs and inhibit inflammatory response via blocking JAK2-STAT5 and NF-κB signaling pathways in LPS-stimulated human mast cells. Considered together,the results show that baicalin may be a useful drug in the treatment of allergic rhinitis.


Subject(s)
Anti-Allergic Agents/therapeutic use , Flavonoids/therapeutic use , Rhinitis, Allergic/drug therapy , Animals , Anti-Allergic Agents/pharmacology , Cell Line , Cell Survival/drug effects , Cytokines/blood , Flavonoids/pharmacology , Guinea Pigs , Humans , Immunoglobulin E/blood , Janus Kinase 2/metabolism , Lipopolysaccharides , Male , Mast Cells/drug effects , Mast Cells/immunology , Mast Cells/metabolism , NF-kappa B/metabolism , Nasal Mucosa/drug effects , Nasal Mucosa/immunology , Ovalbumin , Rhinitis, Allergic/blood , Rhinitis, Allergic/immunology , STAT5 Transcription Factor/metabolism
3.
Yao Xue Xue Bao ; 50(6): 702-7, 2015 Jun.
Article in Chinese | MEDLINE | ID: mdl-26521440

ABSTRACT

This study is to investigate the inhibitory effect of kaempferol on inflammatory response of lipopolysaccharide(LPS)-stimulated HMC-1 mast cells. The cytotoxicity of kaempferol to HMC-1 mast cells were analyzed by using MTT assay and then the administration concentrations of kaempferol were established. Histamine, IL-6, IL-8, IL-1ß and TNF-α were measured using ELISA assay in activated HMC-1 mast cells after incubation with various concentrations of kaempferol (10, 20 and 40 µmol.L-1). Western blot was used to test the protein expression of p-IKKß, IκBα, p-IκBα and nucleus NF-κB of LPS-induced HMC-1 mast cells after incubation with different concentrations of kaempferol. The optimal concentrations of kaempferol were defined as the range from 5 µmol.L-1 to 40 µmol.L-1. Kaempferol significantly decreased the release of histamine, IL-6, IL-8, IL-1ß and TNF-α of activated HMC-1 mast cells (P<0.01). After incubation with kaempferol, the protein expression of p-IKKß, p-IKBa and nucleus NF-κB (p65) markedly reduced in LPS-stimulated HMC-1 mast cells (P<0.01). Taken together, we concluded that kaempferol markedly inhibit mast cell-mediated inflammatory response. At the same time, kaempferol can inhibit the activation of IKKß, block the phosphorylation of IκBα, prevent NF-KB entering into the nucleus, and then decrease the release of inflammatory mediators.


Subject(s)
Inflammation/metabolism , Kaempferols/pharmacology , Mast Cells/drug effects , Cells, Cultured , Histamine/metabolism , Humans , I-kappa B Kinase/metabolism , I-kappa B Proteins/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Lipopolysaccharides , NF-KappaB Inhibitor alpha , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...