Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Gut ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38744443

ABSTRACT

OBJECTIVE: Squalene epoxidase (SQLE) promotes metabolic dysfunction-associated steatohepatitis-associated hepatocellular carcinoma (MASH-HCC), but its role in modulating the tumour immune microenvironment in MASH-HCC remains unclear. DESIGN: We established hepatocyte-specific Sqle transgenic (tg) and knockout mice, which were subjected to a choline-deficient high-fat diet plus diethylnitrosamine to induce MASH-HCC. SQLE function was also determined in orthotopic and humanised mice. Immune landscape alterations of MASH-HCC mediated by SQLE were profiled by single-cell RNA sequencing and flow cytometry. RESULTS: Hepatocyte-specific Sqle tg mice exhibited a marked increase in MASH-HCC burden compared with wild-type littermates, together with decreased tumour-infiltrating functional IFN-γ+ and Granzyme B+ CD8+ T cells while enriching Arg-1+ myeloid-derived suppressor cells (MDSCs). Conversely, hepatocyte-specific Sqle knockout suppressed tumour growth with increased cytotoxic CD8+ T cells and reduced Arg-1+ MDSCs, inferring that SQLE promotes immunosuppression in MASH-HCC. Mechanistically, SQLE-driven cholesterol accumulation in tumour microenvironment underlies its effect on CD8+ T cells and MDSCs. SQLE and its metabolite, cholesterol, impaired CD8+ T cell activity by inducing mitochondrial dysfunction. Cholesterol depletion in vitro abolished the effect of SQLE-overexpressing MASH-HCC cell supernatant on CD8+ T cell suppression and MDSC activation, whereas cholesterol supplementation had contrasting functions on CD8+ T cells and MDSCs treated with SQLE-knockout supernatant. Targeting SQLE with genetic ablation or pharmacological inhibitor, terbinafine, rescued the efficacy of anti-PD-1 treatment in MASH-HCC models. CONCLUSION: SQLE induces an impaired antitumour response in MASH-HCC via attenuating CD8+ T cell function and augmenting immunosuppressive MDSCs. SQLE is a promising target in boosting anti-PD-1 immunotherapy for MASH-HCC.

2.
Front Psychiatry ; 15: 1265722, 2024.
Article in English | MEDLINE | ID: mdl-38559394

ABSTRACT

Objectives: Although sexual minorities have reported higher levels of suicidal ideation than heterosexuals across cultures, the role of various psychosocial factors underlying this disparity among young men has been understudied, particularly in China. This study examined the multiple mediating effects of psychosocial factors between sexual orientation and suicidal ideation in Chinese sexual minority and heterosexual young men. Methods: 302 Chinese cisgender men who identified as gay or bisexual, and 250 cisgender heterosexual men (n=552, aged 18-39 years) completed an online questionnaire measuring perceived social support, self-esteem, depressive symptoms, and suicidal ideation. Results: Young sexual minority men reported significantly higher suicidal ideation and lower social support than their heterosexual peers. Structural equation modelling revealed two multiple indirect pathways. One pathway indicated that sexual orientation was indirectly related to suicidal ideation via family support and depressive symptoms. Another pathway indicated that sexual orientation was indirectly related to suicidal ideation via support from friends, self-esteem, and depressive symptoms. Conclusions: This study is among the first to examine the potentially cascading relationships between sexual orientation and psychosocial factors with suicidal ideation in a Chinese sample of young men. The findings highlight several promising psychosocial targets (i.e., improving family/friend support and increasing self-esteem) for suicide interventions among sexual minority males in China.

3.
Cell ; 187(4): 882-896.e17, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38295787

ABSTRACT

Streptococcus anginosus (S. anginosus) was enriched in the gastric mucosa of patients with gastric cancer (GC). Here, we show that S. anginosus colonized the mouse stomach and induced acute gastritis. S. anginosus infection spontaneously induced progressive chronic gastritis, parietal cell atrophy, mucinous metaplasia, and dysplasia in conventional mice, and the findings were confirmed in germ-free mice. In addition, S. anginosus accelerated GC progression in carcinogen-induced gastric tumorigenesis and YTN16 GC cell allografts. Consistently, S. anginosus disrupted gastric barrier function, promoted cell proliferation, and inhibited apoptosis. Mechanistically, we identified an S. anginosus surface protein, TMPC, that interacts with Annexin A2 (ANXA2) receptor on gastric epithelial cells. Interaction of TMPC with ANXA2 mediated attachment and colonization of S. anginosus and induced mitogen-activated protein kinase (MAPK) activation. ANXA2 knockout abrogated the induction of MAPK by S. anginosus. Thus, this study reveals S. anginosus as a pathogen that promotes gastric tumorigenesis via direct interactions with gastric epithelial cells in the TMPC-ANXA2-MAPK axis.


Subject(s)
Gastritis , Stomach Neoplasms , Streptococcal Infections , Streptococcus anginosus , Animals , Humans , Mice , Atrophy/pathology , Carcinogenesis , Cell Transformation, Neoplastic , Gastric Mucosa , Gastritis/pathology , Inflammation/pathology , Mitogen-Activated Protein Kinases , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology , Streptococcus anginosus/physiology , Streptococcal Infections/pathology
4.
Gastroenterology ; 166(2): 323-337.e7, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37858797

ABSTRACT

BACKGROUND & AIMS: Dietary fibers are mainly fermented by the gut microbiota, but their roles in colorectal cancer (CRC) are largely unclear. Here, we investigated the associations of different fibers with colorectal tumorigenesis in mice. METHODS: Apcmin/+ mice and C57BL/6 mice with azoxymethane (AOM) injection were used as CRC mouse models. Mice were fed with mixed high-fiber diet (20% soluble fiber and 20% insoluble fiber), high-inulin diet, high-guar gum diet, high-cellulose diet, or diets with different inulin dose. Germ-free mice were used for validation. Fecal microbiota and metabolites were profiled by shotgun metagenomic sequencing and liquid chromatography-mass spectrometry, respectively. RESULTS: Mixed high-fiber diet promoted colorectal tumorigenesis with increased tumor number and tumor load in AOM-treated and Apcmin/+ mice. Antibiotics use abolished the pro-tumorigenic effect of mixed high-fiber diet, while transplanting stools from mice fed with mixed high-fiber diet accelerated tumor growth in AOM-treated germ-free mice. We therefore characterized the contribution of soluble and insoluble fiber in CRC separately. Our results revealed that soluble fiber inulin or guar gum, but not insoluble fiber cellulose, promoted colorectal tumorigenesis in AOM-treated and Apcmin/+ mice. Soluble fiber induced gut dysbiosis with Bacteroides uniformis enrichment and Bifidobacterium pseudolongum depletion, accompanied by increased fecal butyrate and serum bile acids and decreased inosine. We also identified a positive correlation between inulin dosage and colorectal tumorigenesis. Moreover, transplanting stools from mice fed with high-inulin diet increased colonic cell proliferation and oncogene expressions in germ-free mice. CONCLUSION: High-dose soluble but not insoluble fiber potentiates colorectal tumorigenesis in a dose-dependent manner by dysregulating gut microbiota and metabolites in mice.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Mice , Animals , Inulin/pharmacology , Mice, Inbred C57BL , Carcinogenesis , Dietary Fiber/metabolism , Cellulose/pharmacology , Azoxymethane , Colorectal Neoplasms/pathology
5.
Ultrason Sonochem ; 100: 106600, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37741022

ABSTRACT

Recently, bismuth (Bi)-based photocatalysts have been a well-deserved hotspot in the field of photocatalysis owning to their photoelectrochemical properties driven by the distortion of the Bi 6 s orbital, while their narrow band gap and poor quantum efficiency still restrict their application. With the development of ultrasonic technology, it is expected to become a broom to clear the application obstacles of Bi-based photocatalysts. The special forces and environmental conditions brought by ultrasonic irradiation play beneficial roles in the preparation, modification and performance releasement of Bi-based photocatalysts. In this review, the role and influencing factors of ultrasound in the preparation and modification of Bi-based photocatalysts were introduced. Crucially, the mechanism of the improving the performance for various types of Bi-based photocatalysts by ultrasound in the whole process of photocatalysis was deeply analyzed. Then, the application of ultrasonic synergistic Bi-based photocatalysts in contaminants treatment and energy conversion was briefly introduced. Finally, based on an unambiguous understanding of ultrasonic technology in assisting Bi-based photocatalysts, the future directions and possibilities for ultrasonic synergistic Bi-based photocatalysts are explored.

6.
Cell Rep Med ; 4(8): 101144, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37586322

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is an emerging risk factor of hepatocellular carcinoma (HCC). However, the mechanism and target therapy of NAFLD-HCC are still unclear. Here, we identify that the N6-methyladenosine (m6A) methyltransferase METTL3 promotes NAFLD-HCC. Hepatocyte-specific Mettl3 knockin exacerbated NAFLD-HCC formation, while Mettl3 knockout exerted the opposite effect in mice. Single-cell RNA sequencing revealed that METTL3 suppressed antitumor immune response by reducing granzyme B (GZMB+) and interferon gamma-positive (IFN-γ+) CD8+ T cell infiltration, thereby facilitating immune escape. Mechanistically, METTL3 mediates sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) mRNA m6A to promote its translation, leading to the activation of cholesterol biosynthesis. This enhanced secretion of cholesterol and cholesteryl esters that impair CD8+ T cell function in the tumor microenvironment. Targeting METTL3 by single-guide RNA, nanoparticle small interfering RNA (siRNA), or pharmacological inhibitor (STM2457) in combination with anti-programmed cell death protein 1 (PD-1) synergized to reinvigorate cytotoxic CD8+ T cells and mediate tumor regression. Together, METTL3 is a therapeutic target in NAFLD-HCC, especially in conjunction with immune checkpoint blockade (ICB) therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Methyltransferases , Non-alcoholic Fatty Liver Disease , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , CD8-Positive T-Lymphocytes , Immunotherapy , Interferon-gamma/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Methyltransferases/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/complications , Tumor Microenvironment
7.
Cells ; 12(15)2023 07 29.
Article in English | MEDLINE | ID: mdl-37566043

ABSTRACT

Cervical cancer is the most prevalent gynecological tumor among women worldwide. Although the incidence and mortality of cervical cancer have been declining thanks to the wide-scale implementation of cytological screening, it remains a major challenge in clinical treatment. High viability is one of the leading causes of the chemotherapeutic resistance in cervical cancers. Formin-binding protein 1 (FNBP1) could stimulate F-actin polymerization beneath the curved plasma membrane in the cell migration and endocytosis, which had previously been well defined. Here, FNBP1 was also demonstrated to play a crucial role in cervical cancer cell survival, and the knockdown of which could result in the attenuation of FAK/PI3K/AKT signaling followed by significant apoptotic accumulation and proliferative inhibition. In addition, the epidermal growth factor (hrEGF) abrogated all the biological effects mediated by the silencing of FNBP1 except for the cell adhesion decrease. These findings indicated that FNBP1 plays a key role in maintaining the activity of focal adhesion kinase (FAK) by promoting cell adhesion. The activated FAK positively regulated downstream PI3K/AKT/mTOR signaling, which is responsible for cell survival. Promisingly, FNBP1 might be a potential target against cervical cancer in combination therapy.


Subject(s)
Proto-Oncogene Proteins c-akt , Uterine Cervical Neoplasms , Female , Humans , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Survival , TOR Serine-Threonine Kinases/metabolism , Fatty Acid-Binding Proteins
8.
J Hepatol ; 79(6): 1352-1365, 2023 12.
Article in English | MEDLINE | ID: mdl-37459922

ABSTRACT

BACKGROUND & AIMS: Recent studies have highlighted the role of the gut microbiota and their metabolites in non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC). We aimed to identify specific beneficial bacterial species that could be used prophylactically to prevent NAFLD-HCC. METHODS: The role of Bifidobacterium pseudolongum was assessed in two mouse models of NAFLD-HCC: diethylnitrosamine + a high-fat/high-cholesterol diet or + a choline-deficient/high-fat diet. Germ-free mice were used for the metabolic study of B. pseudolongum. Stool, portal vein and liver tissues were collected from mice for non-targeted and targeted metabolomic profiles. Two human NAFLD-HCC cell lines (HKCI2 and HKCI10) were co-cultured with B. pseudolongum-conditioned media (B.p CM) or candidate metabolites. RESULTS: B. pseudolongum was the top depleted bacterium in mice with NAFLD-HCC. Oral gavage of B. pseudolongum significantly suppressed NAFLD-HCC formation in two mouse models (p < 0.01). Incubation of NAFLD-HCC cells with B.p CM significantly suppressed cell proliferation, inhibited the G1/S phase transition and induced apoptosis. Acetate was identified as the critical metabolite generated from B. pseudolongum in B.p CM, an observation that was confirmed in germ-free mice. Acetate inhibited cell proliferation and induced cell apoptosis in NAFLD-HCC cell lines and suppressed NAFLD-HCC tumor formation in vivo. B. pseudolongum restored heathy gut microbiome composition and improved gut barrier function. Mechanistically, B. pseudolongum-generated acetate reached the liver via the portal vein and bound to GPR43 (G coupled-protein receptor 43) on hepatocytes. GPR43 activation suppressed the IL-6/JAK1/STAT3 signaling pathway, thereby preventing NAFLD-HCC progression. CONCLUSIONS: B. pseudolongum protected against NAFLD-HCC by secreting the anti-tumor metabolite acetate, which reached the liver via the portal vein. B. pseudolongum holds potential as a probiotic for the prevention of NAFLD-HCC. IMPACT AND IMPLICATIONS: Non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC) is an increasing healthcare burden worldwide. There is an urgent need to develop effective agents to prevent NAFLD-HCC progression. Herein, we show that the probiotic Bifidobacterium pseudolongum significantly suppressed NAFLD-HCC progression by secreting acetate, which bound to hepatic GPR43 (G coupled-protein receptor 43) via the gut-liver axis and suppressed the oncogenic IL-6/JAK1/STAT3 signaling pathway. Bifidobacterium pseudolongum holds potential as a novel probiotic for NAFLD-HCC prevention.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/prevention & control , Carcinoma, Hepatocellular/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Interleukin-6/metabolism , Liver/pathology , Liver Neoplasms/etiology , Liver Neoplasms/prevention & control , Liver Neoplasms/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Acetates , Microbiota
9.
Cancer Cell ; 41(8): 1450-1465.e8, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37478851

ABSTRACT

Carnobacterium maltaromaticum was found to be specifically depleted in female patients with colorectal cancer (CRC). Administration of C. maltaromaticum reduces intestinal tumor formation in two murine CRC models in a female-specific manner. Estrogen increases the attachment and colonization of C. maltaromaticum via increasing the colonic expression of SLC3A2 that binds to DD-CPase of this bacterium. Metabolomic and transcriptomic profiling unveils the increased gut abundance of vitamin D-related metabolites and the mucosal activation of vitamin D receptor (VDR) signaling in C. maltaromaticum-gavaged mice in a gut microbiome- and VDR-dependent manner. In vitro fermentation system confirms the metabolic cross-feeding of C. maltaromaticum with Faecalibacterium prausnitzii to convert C. maltaromaticum-produced 7-dehydrocholesterol into vitamin D for activating the host VDR signaling. Overall, C. maltaromaticum colonizes the gut in an estrogen-dependent manner and acts along with other microbes to augment the intestinal vitamin D production to activate the host VDR for suppressing CRC.


Subject(s)
Colorectal Neoplasms , Vitamin D , Mice , Female , Animals , Vitamin D/metabolism , Carnobacterium/metabolism , Estrogens/metabolism , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism
10.
J Environ Manage ; 344: 118545, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37418928

ABSTRACT

Emerging photoelectrocatalytic (PEC) systems integrate the advantages of photocatalysis and electrocatalysis and are considered as a promising technology for solving the global organic pollution problem in water environments. Among the photoelectrocatalytic materials applied for organic pollutant degradation, graphitic carbon nitride (CN) has the combined advantages of environmental compatibility, stability, low cost, and visible light response. However, pristine CN has disadvantages such as low specific surface area, low electrical conductivity, and high charge complexation rate, and how to improve the degradation efficiency of PEC reaction and the mineralization rate of organic matter is the main problem faced in this field. Therefore, this paper reviews the progress of various functionalized CN used for PEC reaction in recent years, and the degradation efficiency of these CN-based materials is critically evaluated. First, the basic principles of PEC degradation of organic pollutants are outlined. Then, engineering strategies to enhance the PEC activity of CN (including morphology control, elemental doping, and heterojunction construction) are focused on, and the structure-activity relationships between these engineering strategies and PEC activity are discussed. In addition, the important role of influencing factors on the PEC system is summarized in terms of mechanism, to provide guidance for the subsequent research. Finally, suggestions and perspectives are provided for the preparation of efficient and stable CN-based photoelectrocatalysts for practical wastewater treatment applications.


Subject(s)
Environmental Pollutants , Water
11.
EBioMedicine ; 93: 104670, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37343363

ABSTRACT

BACKGROUND: Obesity is a risk factor for colorectal cancer (CRC). The role of gut microbiota in mediating the cancer-promoting effect of obesity is unknown. METHODS: Azoxymethane (AOM)-treated, ApcMin/+ and germ-free mice were gavaged with feces from obese individuals and control subjects respectively. The colonic tumor load and number were recorded at the endpoint in two carcinogenic models. The gut microbiota composition and colonic transcriptome were assessed by metagenomic sequencing and RNA sequencing, respectively. The anticancer effects of bacteria depleted in fecal samples of obese individuals were validated. FINDINGS: Conventional AOM-treated and ApcMin/+ mice receiving feces from obese individuals showed significantly increased colon tumor formation compared with those receiving feces from control subjects. AOM-treated mice receiving feces from obese individuals showed impaired intestinal barrier function and significant upregulation of pro-inflammatory cytokines and activation of oncogenic Wnt signaling pathway. Consistently, transferring feces from obese individuals to germ-free mice led to increased colonic cell proliferation, intestinal barrier function impairment, and induction of oncogenic and proinflammatory gene expression. Moreover, germ-free mice transplanted with feces from obese human donors had increased abundance of potential pathobiont Alistipes finegoldii, and reduced abundance of commensals Bacteroides vulgatus and Akkermansia muciniphila compared with those receiving feces from human donors with normal body mass index (BMI). Validation experiments showed that B. vulgatus and A. muciniphila demonstrated anti-proliferative effects in CRC, while A. finegoldii promoted CRC tumor growth. INTERPRETATION: Our results supported the role of obesity-associated microbiota in colorectal carcinogenesis and identified putative bacterial candidates that may mediate its mechanisms. Microbiota modulation in obese individuals may provide new approaches to prevent or treat obesity-related cancers including CRC. FUNDING: This work was funded by National Key Research and Development Program of China (2020YFA0509200/2020YFA0509203), National Natural Science Foundation of China (81922082), RGC Theme-based Research Scheme Hong Kong (T21-705/20-N), RGC Research Impact Fund Hong Kong (R4632-21F), RGC-CRF Hong Kong (C4039-19GF and C7065-18GF), RGC-GRF Hong Kong (14110819, 14111621), and NTU Start-Up Grant (021337-00001).


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Mice , Animals , Carcinogenesis , Obesity/complications , Azoxymethane/toxicity , Colorectal Neoplasms/genetics , Mice, Inbred C57BL , Disease Models, Animal
12.
Transl Psychiatry ; 13(1): 163, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37164957

ABSTRACT

Major depressive disorder (MDD) is the most prevalent form of depression and is becoming a great challenge for public health and medical practice. Although first-line antidepressants offer therapeutic benefits, about 35% of depressed patients are not adequately treated, creating a substantial unmet medical need. A multicenter, double-blind, randomized, placebo-controlled phase 3 clinical trial was conducted in patients with MDD in China to assess the efficacy and safety of ansofaxine (LY03005), a potential triple reuptake inhibitor of serotonin, norepinephrine, and dopamine. Eligible 588 MDD patients were included and randomly assigned (1:1:1) to 8-week treatment with ansofaxine 80 mg/day(n = 187), ansofaxine 160 mg/day(n = 186), or placebo(n = 185). The primary efficacy endpoint was the Montgomery-Åsberg Depression Rating Scale (MADRS) total score change from baseline to the end of the study. Safety indexes included adverse events, vital signs, physical examination, laboratory tests, 12-lead electrocardiogram (ECG), and evaluation of suicide tendency and sexual function. Significant differences were found in mean changes in MADRS total score at week 8 in the two ansofaxine groups (80 mg, -20.0; 160 mg, -19.9) vs. placebo (-14.6; p < 0.0001). All doses of ansofaxine were generally well-tolerated. Treatment-emergent adverse events (TEAEs) were reported by 137 (74.46%) patients in ansofaxine 80 mg group, 144 (78.26%) patients in ansofaxine 160 mg and 125 (67.93%) patients in the placebo group. The incidence of treatment-related adverse events (TRAEs) was 59.2% (109 patients), 65.22% (120 patients) in the 80, 160 mg ansofaxine groups, and 45.11% (83 patients) in the placebo group. The initial results of this trial indicate that ansofaxine at both the 80 mg/day and 160 mg/day was effective and safe in adult patients with MDD. ClinicalTrials.gov Identifier: NCT04853407.


Subject(s)
Depressive Disorder, Major , Adult , Humans , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/diagnosis , Antidepressive Agents/adverse effects , China , Double-Blind Method , Treatment Outcome
13.
Small Methods ; 7(6): e2201692, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36965154

ABSTRACT

The crystal habit can have a profound influence on the physical properties of crystalline materials, and thus controlling the crystal morphology is of great practical relevance across many industries. Herein, this work investigates the effect of polymer additives on the crystal habit of metformin HCl with both experiments and computational methods with the aim of developing a combined screening approach for crystal morphology engineering. Crystallization experiments of metformin HCl are conducted in methanol and in an isopropanol-water mixture (8:2 V/V). Polyethylene glycol, polyvinylpyrrolidone, Tween80, and hydroxypropyl methylcellulose polymer additives are used in low concentrations (1-2% w/w) in the experiments to study the effect they have on modifying the crystal habit. Additionally, this work has developed computational methods to characterize the morphology "landscape" and quantifies the overall effect of solvent and additives on the predicted crystal habits. Further analysis of the molecular dynamics simulations is used to rationalize the effect of additives on specific crystal faces. This work demonstrates that the effects of additives on the crystal habit are a result of their absorption and interactions with the slow growing {100} and {020} faces.

14.
Neurosci Lett ; 795: 137032, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36581063

ABSTRACT

The role of nucleotide-binding oligomerization domainlike receptor pyrin domain containing 3 (NLRP3) inflammasome in cerebral ischemia-reperfusion (I/R) induced neuroinflammation and neuronal pyroptosis has been widely recognized. Latest studies revealed that NLRP3 inflammasome engage in not only pyroptosis but also other types of cell death. Ferroptosis has been proved to be closely associated with cerebral I/R injury. In this study, our objectives were to verify the inhibitory effect of the NLRP3-specific inhibitor MCC950 on cerebral I/R-mediated neuronal pyroptosis, and to explore the regulation and possible mechanism of MCC950 on cerebral I/R-mediated neuronal ferroptosis. Our data showed that the NLRP3-specific inhibitor, MCC950, effectively reversed the I/R-mediated NLRP3 inflammasome activation and neuronal pyroptosis. Furthermore, we found that I/R increased iron concentrations and levels of malondialdehyde (MDA), downregulated glutathione peroxidase 4 (GPX4) expression, and upregulated long chain fatty acid-CoA ligase 4 (FACL4) and prostaglandin endoperoxide synthase 2 (PTGS2) expression. Interestingly, these changes were also reversed by the MCC950. Finally, in vitro, we found that MCC950 significantly reduced ROS levels in OGD/R treated HT22 cells. In conclusion, pharmaceutical inhibition of NLRP3 by MCC950 attenuates I/R-induced neuronal ferroptosis, possibly by reducing ROS accumulation.


Subject(s)
Brain Ischemia , Ferroptosis , Reperfusion Injury , Animals , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species , Disease Models, Animal , Sulfonamides/pharmacology , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Cerebral Infarction , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Furans/pharmacology , Reperfusion
15.
Front Psychiatry ; 13: 1009810, 2022.
Article in English | MEDLINE | ID: mdl-36532171

ABSTRACT

Introduction: COVID-19 related stress might vary with the pandemic changes, as well as other associated factors. This study aimed to compare the stress level during the first wave of the pandemic outbreak and 1 year later in China, and to explore the differential roles of social support and perceptions of this disease in affecting pandemic-related stress over time. Methods: COVID-19 related stress, social support, and perceptions of the pandemic (perceived threat, perceived protection, and perceived controllability) were measured using the Impact of Event Scale-Revised for COVID-19, the Multidimensional Scale of Perceived Social Support, and the Self-Compiled Scale of COVID-19 Related Perception, respectively. Using an online survey, two independent samples were collected during the first wave of the COVID-19 outbreak (Time 1: March 2020, N = 430) and 1 year later (Time 2: April 2021, N = 512). Results: Levels of COVID-19 related stress and social support were lower at Time 2. Furthermore, at both Time 1 and Time 2, more social support was associated with less stress. Perceived protection and controllability of COVID-19 also mediated the relationship between social support and COVID-19 at both time points. However, the perceived threat of COVID-19 only served as a mediator at Time 1. Conclusion: These results indicate that Chinese people might experience lower COVID-19 related stress as the pandemic progresses. The perceived threat of COVID-19 played a more critical role in stress experienced at Time 1. These findings not only underscore the importance of social support under the context of Chinese society, but also have implications for developing specific interventions targeting different perceptions of COVID-19 to reduce pandemic-related stress during the different waves of this pandemic.

16.
Front Public Health ; 10: 1007130, 2022.
Article in English | MEDLINE | ID: mdl-36148343

ABSTRACT

Enterocytozoon bieneusi is a zoonotic pathogen commonly found in humans and animals all over the world. Here, we investigated the occurrence and genotype constitute of E. bieneusi among the individuals from Haikou city of Hainan, China. A total of 1,264 fecal samples of humans were collected, including 628 samples from patients with diarrhea (325 adults and 303 children) and 636 samples from the asymptomatic population (383 college students and 253 kindergarten children). E. bieneusi was detected using nested polymerase chain reaction (PCR) amplification of the internal transcribed spacer (ITS) region. A phylogenetic tree was constructed using a neighbor-joining tree construction method. The overall prevalence of E. bieneusi was 3.7% (47/1,264), while it was 5.6% in the patients with diarrhea (5.8% in adults and 5.3% in children) and 1.9% in the asymptomatic population (2.9% in college students and 0.4% in kindergarten children). The prevalence of E. bieneusi in humans with diarrhea was significantly higher than that in the asymptomatic population (χ2 = 36.9; P < 0.05). A total of 28 genotypes were identified, including ten known genotypes: CHG2 (n = 3), CHG3 (n = 5), CHG5 (n = 10), CM21 (n = 1), EbpA (n = 1), EbpC (n = 1), PigEBITS4 (n = 1), PigEBITS7 (n = 1), SHR1 (n = 4), Type IV (n = 2), and 18 novel genotypes (HNH-1 to HNH-18; one each). All these genotypes were categorized into three groups, including group 1 (n = 6), group 2 (n = 14), and group 13 (n = 8). This was the first study on the identification of E. bieneusi among humans in Hainan, China. The correlation between E. bieneusi infection and diarrhea was observed. The high diversity and distinctive distribution of E. bieneusi genotypes found in this study reflected the unique epidemic genetic characteristics of E. bieneusi in humans living in Hainan.


Subject(s)
Enterocytozoon , Microsporidiosis , Animals , Child , China/epidemiology , Diarrhea/epidemiology , Enterocytozoon/genetics , Genetic Variation , Humans , Microsporidiosis/epidemiology , Phylogeny , Prevalence
17.
Oncogene ; 41(36): 4200-4210, 2022 09.
Article in English | MEDLINE | ID: mdl-35882981

ABSTRACT

Large-scale fecal shotgun metagenomic sequencing revealed the high abundance of Parvimonas micra in colorectal cancer (CRC) patients. We investigated the role and clinical significance of P. micra in colorectal tumorigenesis. The abundance of P. micra was examined in 309 fecal samples and 165 colon biopsy tissues of CRC patients and healthy subjects. P. micra was significantly enriched in fecal samples from 128 CRC patients compared to 181 healthy subjects (P < 0.0001); and in colon tissue biopsies from 52 CRC patients compared to 61 healthy subjects (P < 0.0001). Multivariate analysis showed that P. micra is an independent risk factor of poor survival in CRC patients (Hazard Ratio: 1.93). P. micra strain was isolated from feces of a CRC patient. Apcmin/+ mice gavaged with P. micra showed significantly higher tumor burden and tumor load (both P < 0.01). Consistently, gavage of P. micra significantly promoted colonocyte proliferation in conventional mice, which was further confirmed by germ-free mice. P. micra colonization up-regulated genes involved in cell proliferation, stemness, angiogenesis and invasiveness/metastasis; and enhanced Th17 cells infiltration and expression of Th17 cells-secreted cytokines (Il-17, Il-22, and Il-23) in the colon of Apcmin/+, conventional and germ-free mice. P. micra-conditioned medium significantly promoted the differentiation of CD4+ T cells to Th17 cells (IL-17+CD4+ phenotype) and enhanced the oncogenic Wnt signaling pathway. In conclusion, P. micra promoted colorectal tumorigenesis in mice by inducing colonocyte proliferation and altering Th17 immune response. P. micra may act as a prognostic biomarker for poor survival of CRC patients.


Subject(s)
Colorectal Neoplasms , Interleukin-17 , Animals , Carcinogenesis/genetics , Cell Proliferation , Colorectal Neoplasms/pathology , Firmicutes , Gene Expression Regulation, Neoplastic , Humans , Interleukin-17/metabolism , Mice
18.
Gastroenterology ; 163(4): 891-907, 2022 10.
Article in English | MEDLINE | ID: mdl-35700773

ABSTRACT

BACKGROUND & AIMS: N6-Methyladenosine (m6A) is the most prevalent RNA modification and recognized as an important epitranscriptomic mechanism in colorectal cancer (CRC). We aimed to exploit whether and how tumor-intrinsic m6A modification driven by methyltransferase like 3 (METTL3) can dictate the immune landscape of CRC. METHODS: Mettl3 knockout mice, CD34+ humanized mice, and different syngeneic mice models were used. Immune cell composition and cytokine level were analyzed by flow cytometry and Cytokine 23-Plex immunoassay, respectively. M6A sequencing and RNA sequencing were performed to identify downstream targets and pathways of METTL3. Human CRC specimens (n = 176) were used to evaluate correlation between METTL3 expression and myeloid-derived suppressor cell (MDSC) infiltration. RESULTS: We demonstrated that silencing of METTL3 in CRC cells reduced MDSC accumulation to sustain activation and proliferation of CD4+ and CD8+ T cells, and eventually suppressed CRC in ApcMin/+Mettl3+/- mice, CD34+ humanized mice, and syngeneic mice models. Mechanistically, METTL3 activated the m6A-BHLHE41-CXCL1 axis by analysis of m6A sequencing, RNA sequencing, and cytokine arrays. METTL3 promoted BHLHE41 expression in an m6A-dependent manner, which subsequently induced CXCL1 transcription to enhance MDSC migration in vitro. However, the effect was negligible on BHLHE41 depletion, CXCL1 protein or CXCR2 inhibitor SB265610 administration, inferring that METTL3 promotes MDSC migration via BHLHE41-CXCL1/CXCR2. Consistently, depletion of MDSCs by anti-Gr1 antibody or SB265610 blocked the tumor-promoting effect of METTL3 in vivo. Importantly, targeting METTL3 by METTL3-single guide RNA or specific inhibitor potentiated the effect of anti-programmed cell death protein 1 (anti-PD1) treatment. CONCLUSIONS: Our study identifies METTL3 as a potential therapeutic target for CRC immunotherapy whose inhibition reverses immune suppression through the m6A-BHLHE41-CXCL1 axis. METTL3 inhibition plus anti-PD1 treatment shows promising antitumor efficacy against CRC.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Animals , Basic Helix-Loop-Helix Transcription Factors , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Chemokine CXCL1 , Colorectal Neoplasms/pathology , Cytokines/metabolism , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Mice, Knockout , Phenylurea Compounds , RNA, Guide, Kinetoplastida , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Triazoles
19.
J Biomater Appl ; 37(1): 33-39, 2022 07.
Article in English | MEDLINE | ID: mdl-35452336

ABSTRACT

Adding gentamicin to silk fibroin enhances both the antibacterial performance and degradation rate of silk-based materials. The increased material degradation rate can affect the strength of early internal fixation, resulting in internal fixation failure. This study sought to adjust the gentamicin concentration to control the material degradation rate, thereby better meeting clinical application requirements. The in vitro degradation, water absorption rate, and expansion rate of silk-based materials containing different gentamicin concentrations were studied. A gentamicin-loaded silk-based screw was implanted into the femurs of New Zealand rabbits. Micro-computed tomography was used to measure the screw diameter, which was then used to calculate the degradation rate. The specimens were stained with hematoxylin and eosin and Masson's trichrome. The in vitro results revealed increasing material degradation rates with increasing gentamicin concentration but no significant differences in water absorption rates with different gentamicin concentrations. The degradation rates of gentamicin-loaded (4 mg/g) silk-based rod-like materials were approximately 11.08% at three months in vitro and 9.4% in the animal experiment. The time for complete degradation was predicted from the fitting curve to be approximately 16 months. No inflammatory hyperplasia was observed in bone or soft tissue. The degradation and biocompatibility of the material containing 4 mg/g gentamicin meet clinical application requirements, and previous experimental results demonstrate good antibacterial performance of materials containing this gentamicin concentration.


Subject(s)
Fibroins , Silk , Animals , Anti-Bacterial Agents/pharmacology , Biocompatible Materials , Gentamicins , Rabbits , Water , X-Ray Microtomography
20.
Gut ; 71(12): 2439-2450, 2022 12.
Article in English | MEDLINE | ID: mdl-35387878

ABSTRACT

OBJECTIVE: Cigarette smoking is a major risk factor for colorectal cancer (CRC). We aimed to investigate whether cigarette smoke promotes CRC by altering the gut microbiota and related metabolites. DESIGN: Azoxymethane-treated C57BL/6 mice were exposed to cigarette smoke or clean air 2 hours per day for 28 weeks. Shotgun metagenomic sequencing and liquid chromatography mass spectrometry were parallelly performed on mice stools to investigate alterations in microbiota and metabolites. Germ-free mice were transplanted with stools from smoke-exposed and smoke-free control mice. RESULTS: Mice exposed to cigarette smoke had significantly increased tumour incidence and cellular proliferation compared with smoke-free control mice. Gut microbial dysbiosis was observed in smoke-exposed mice with significant differential abundance of bacterial species including the enrichment of Eggerthella lenta and depletion of Parabacteroides distasonis and Lactobacillus spp. Metabolomic analysis showed increased bile acid metabolites, especially taurodeoxycholic acid (TDCA) in the colon of smoke-exposed mice. We found that E. lenta had the most positive correlation with TDCA in smoke-exposed mice. Moreover, smoke-exposed mice manifested enhanced oncogenic MAPK/ERK (mitogen-activated protein kinase/extracellular signal­regulated protein kinase 1/2) signalling (a downstream target of TDCA) and impaired gut barrier function. Furthermore, germ-free mice transplanted with stools from smoke-exposed mice (GF-AOMS) had increased colonocyte proliferation. Similarly, GF-AOMS showed increased abundances of gut E. lenta and TDCA, activated MAPK/ERK pathway and impaired gut barrier in colonic epithelium. CONCLUSION: The gut microbiota dysbiosis induced by cigarette smoke plays a protumourigenic role in CRC. The smoke-induced gut microbiota dysbiosis altered gut metabolites and impaired gut barrier function, which could activate oncogenic MAPK/ERK signalling in colonic epithelium.


Subject(s)
Cigarette Smoking , Colorectal Neoplasms , Gastrointestinal Microbiome , Animals , Mice , Gastrointestinal Microbiome/physiology , Dysbiosis/microbiology , Cigarette Smoking/adverse effects , Mice, Inbred C57BL , Carcinogenesis , Colorectal Neoplasms/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...