Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 9(5): 2465-2475, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38682311

ABSTRACT

The development of chemiluminescence-based innovation sensing systems and the construction of a sensing mechanism to improve the analytical performance of compounds remain a great challenge. Herein, we fabricated an advanced oxidation processes pretreated chemiluminescence (AOP-CL) sensing system via the introduction of cobalt-modified black phosphorus nanosheets (Co@BPNs) to achieve higher efficient thiabendazole (TBZ) detection. Co@BPNs, enriched with lattice oxygen, exhibited a superior catalytic performance for accelerating the decomposition of ferrate (VI). This Co@BPNs-based ferrate (VI) AOP system demonstrated a unique ability to selectively decompose TBZ, resulting in a strong CL emission. On this basis, a highly selective and sensitive CL sensing platform for TBZ was established, which exhibited strong resistance to common ions and pesticides interference. This was successfully applied to detecting TBZ in environmental samples such as tea and kiwi fruits. Besides, the TBZ detection mechanism was explored, Co@BPNs-based ferrate (VI) AOP system produced a high yield of ROS (mainly 1O2), which oxidized the thiazole-based structure of TBZ, generating chemical energy that was transferred to Co@BPNs via a chemical electron exchange luminescence (CIEEL) mechanism, leading to intense CL emission. Notably, this study not only proposed an innovative approach to enhance the chemical activity and CL properties of nanomaterials but also offered a new pathway for designing efficient CL probes for pollutant monitoring in complex samples.


Subject(s)
Cobalt , Luminescent Measurements , Nanostructures , Phosphorus , Thiabendazole , Cobalt/chemistry , Phosphorus/chemistry , Thiabendazole/analysis , Nanostructures/chemistry , Luminescent Measurements/methods , Iron/chemistry
2.
Chem Commun (Camb) ; 60(21): 2962-2965, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38376355

ABSTRACT

In this work, we introduced new metal-free catalysts, phosphorus nitride dots (PNDs), into an environmentally friendly H2O2-SO32- system to generate abundant reactive oxygen species (O2˙-, ˙OH and SO4˙-) with strong intrinsic chemiluminescence (CL). The excellent catalytic ability of PNDs not only improved the degradation efficiency of organic pollutants, but also provided a promising prospect for deeply probing the mechanism of advanced oxidation processes (AOPs) by combining with CL.

3.
Invest Ophthalmol Vis Sci ; 64(13): 5, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37792336

ABSTRACT

Purpose: To generate a single-cell RNA-sequencing (scRNA-seq) map and construct cell-cell communication networks of mouse corneas. Methods: C57BL/6 mouse corneas were dissociated to single cells and subjected to scRNA-seq. Cell populations were clustered and annotated for bioinformatic analysis using the R package "Seurat." Differential expression patterns were validated and spatially mapped with whole-mount immunofluorescence staining. Global intercellular signaling networks were constructed using CellChat. Results: Unbiased clustering of scRNA-seq transcriptomes of 14,732 cells from 40 corneas revealed 17 cell clusters of six major cell types: nine epithelial cell, three keratocyte, two corneal endothelial cell, and one each of immune cell, vascular endothelial cell, and fibroblast clusters. The nine epithelial cell subtypes included quiescent limbal stem cells, transit-amplifying cells, and differentiated cells from corneas and two minor conjunctival epithelial clusters. CellChat analysis provided an atlas of the complex intercellular signaling communications among all cell types. Conclusions: We constructed a complete single-cell transcriptomic map and the complex signaling cross-talk among all cell types of the cornea, which can be used as a foundation atlas for further research on the cornea. This study also deepens the understanding of the cellular heterogeneity and heterotypic cell-cell interaction within corneas.


Subject(s)
Cornea , Transcriptome , Mice , Animals , Mice, Inbred C57BL , Cornea/metabolism , Epithelial Cells , Cell Communication
4.
ACS Sens ; 8(9): 3349-3359, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37596990

ABSTRACT

Enhancing the sensitivity and selectivity of chemiluminescence (CL) sensors for detecting chemical species in complex samples poses a significant challenge in nanoparticle surface engineering. Graphitic carbon nitride (CN) shows promise but suffers from weak CL intensity and unknown luminescence mechanisms. In this study, we propose a nitrogen defect strategy to enhance the CL efficiency of europium-functionalized graphitic carbon nitride (Eu-CNNPs). By controlling the dosage of the europium modification, we can adjust the nitrogen defect content to reduce the energy gap and improve the CL performance. Remarkably, Eu-CNNPs with rich nitrogen defects exhibit strong chemiluminescence emission specifically for singlet oxygen (1O2) without responding to other reactive oxygen species (ROS). Building upon this finding, we developed a direct, selective, and sensitive CL sensing platform for 1O2 in PM2.5 and monitored 1O2 production in photosensitizers without interference from metal ions. Through extensive experiments, we attribute the 1O2-driven CL response to the presence of abundant nitrogen defects in the CN material, accelerating electron transfer and yielding a high generation of 1O2. Furthermore, chemiluminescence resonance energy transfer (CRET) between (1O2)2* (1O2 dimeric aggregate) and Eu-CNNPs contributes to strong CL emission. This work provides insights into enhancing the CL performance of CN and offers new possibilities for advancing the practical analysis of nanomaterials using the intriguing mechanism of nitrogen defects.


Subject(s)
Luminescence , Singlet Oxygen , Singlet Oxygen/chemistry , Europium/chemistry , Oxygen/chemistry , Nitrogen
5.
Chem Commun (Camb) ; 59(34): 5110-5113, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37039140

ABSTRACT

In this work, we proposed an oxygen vacancy engineering strategy to boost the chemiluminescence (CL) efficiency in europia clusters/black phosphorus quantum dots (Eu2O3/BPQDs), which could dramatically amplify the ClO- CL emission through electron transfer. Accordingly, a sensitive and direct CL sensing platform for hypochlorite and titanium ions was constructed. This work provides a neoteric methodology by modulating the surface state of nanoparticles to boost the CL sensitivity.

6.
Chem Commun (Camb) ; 58(33): 5168-5171, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35388380

ABSTRACT

In this work, we synthesize stable europium ion modified black phosphorus quantum dots (Eu-BPQDs) using a microwave irradiation technique, which can react with organic amines exhibiting unique chemiluminescence (CL). The mechanism of the Eu-BPQDs/organic amines CL system accounting for the efficient CRET is induced by the chelation of organic amines with the surface functionalized europium.


Subject(s)
Quantum Dots , Amines , Europium , Luminescence , Phosphorus
7.
Insect Biochem Mol Biol ; 142: 103723, 2022 03.
Article in English | MEDLINE | ID: mdl-35074522

ABSTRACT

Incidence of dengue virus (DENV) and Zika virus (ZIKV), two mosquito-borne flaviviruses, is increasing in large parts of the world. Vaccination and medication for these diseases are unsatisfactory. Here, we developed a novel antiviral approach, using a virus-inducible gene expression system, to block virus replication and transmission. Constructs containing the smallest replication units of dengue virus serotype 2 (DENV2) with negative-stranded DENV2 artificial genomes and genes of interest were established in an Aedes aegypti cell line, resulting in expression of target genes after DENV2 infection. Green fluorescent protein (GFP) assays confirmed the system was virus-inducible. When we used one of two apoptosis-related genes, A. aegypti michelob_x (AaMx) and inhibitor of apoptosis (IAP)-antagonist michelob_x-like protein (AaIMP) instead of GFP, the production of viral RNA and proteins were inhibited for all five viruses tested (DENV1-4 and ZIKV), and effector caspase activity was induced. The system thus inhibited the production of infectious virus particles in vitro, and in mosquitoes it did so after DENV2 infection. This is a novel broad-spectrum antiviral approach using a flavivirus-inducible gene-expression system, which could lead to new avenues for mosquito-borne disease control.


Subject(s)
Aedes , Dengue Virus , Dengue , Flavivirus , Zika Virus Infection , Zika Virus , Aedes/genetics , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Gene Expression , Zika Virus/genetics
8.
PLoS One ; 11(4): e0154250, 2016.
Article in English | MEDLINE | ID: mdl-27100286

ABSTRACT

OBJECTIVE: Team-based learning (TBL) is an increasingly popular teaching method in medical education. However, TBL hasn't been well-studied in the ophthalmology clerkship context. This study was to examine the impact of modified TBL in such context and to assess the student evaluations of TBL. METHODS: Ninety-nine students of an 8-year clinical medicine program from Zhongshan Ophthalmic Centre, Sun Yat-sen University, were randomly divided into four sequential units and assigned to six teams with the same faculty. The one-week ophthalmology clerkship module included traditional lectures, gross anatomy and a TBL module. The effects of the TBL module on student performance were measured by the Individual Readiness Assurance Test (IRAT), the Group Readiness Assurance Test (GRAT), the Group Application Problem (GAP) and final examination scores (FESs). Students' evaluations of TBL were measured by a 16-item questionnaire. IRAT and GRAT scores were compared using a paired t-test. One-way analysis of variance (ANOVA) and subgroup analysis compared the effects among quartiles that were stratified by the Basic Ophthalmology Levels (BOLs). The BOLs were evaluated before the ophthalmology clerkship. RESULTS: In TBL classes, the GRAT scores were significantly higher than the IRAT scores in both the full example and the BOL-stratified groups. It highlighted the advantages of TBL compared to the individual learning. Quartile-stratified ANOVA comparisons showed significant differences at FES scores (P < 0.01). In terms to IRAT, GRAT and GAP scores, there was no significant result. Moreover, IRAT scores only significantly differed between the first and fourth groups. The FES scores of the first three groups are significantly higher than the fourth group. Gender-specific differences were significant in FES but not the IRAT. Overall, 57.65% of student respondents agreed that TBL was helpful. Male students tended to rate TBL higher than female students. CONCLUSION: The application of modified TBL to the ophthalmology clerkship curriculum improved students' performance and increased students' engagement and satisfaction. TBL should be further optimized and developed to enhance the educational outcomes among multi-BOLs medical students.


Subject(s)
Curriculum , Education, Medical/methods , Ophthalmology/education , Problem-Based Learning/methods , Analysis of Variance , China , Educational Measurement , Female , Group Processes , Humans , Male , Students, Medical/statistics & numerical data , Surveys and Questionnaires , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...