Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Sci Total Environ ; 941: 173623, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815823

ABSTRACT

Spatially explicit population data is critical to investigating human-nature interactions, identifying at-risk populations, and informing sustainable management and policy decisions. Most long-term global population data have three main limitations: 1) they were estimated with simple scaling or trend extrapolation methods which are not able to capture detailed population variation spatially and temporally; 2) the rate of urbanization and the spatial patterns of settlement changes were not fully considered; and 3) the spatial resolution is generally coarse. To address these limitations, we proposed a framework for large-scale spatially explicit downscaling of populations from census data and projecting future population distributions under different Shared Socio-economic Pathways (SSP) scenarios with the consideration of distinctive changes in urban extent. We downscaled urban and rural population separately and considered urban spatial sprawl in downscaling and projection. Treating urban and rural populations as distinct but interconnected entities, we constructed a random forest model to downscale historical populations and designed a gravity-based population potential model to project future population changes at the grid level. This work built a new capacity for understanding spatially explicit demographic change with a combination of temporal, spatial, and SSP scenario dimensions, paving the way for cross-disciplinary studies on long-term socio-environmental interactions.

2.
Small ; : e2312059, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38600893

ABSTRACT

Realizing high-performance thick electrodes is considered as a practical strategy to promote the energy density of lithium-ion batteries. However, establishing effective transport pathways for both lithium-ions and electrons in a thick electrode is very challenging. This study develops a hierarchical conductive network structure for constructing high-performance NMC811 (LiNi0.8Mn0.1Co0.1O2) cathode toward stable cycling at high areal mass loadings. The hierarchical conductive networks are composed of a Li+/e- mixed conducting interface (lithium polyacrylate/hydroxyl-functionalized multiwalled carbon nanotubes) on NMC811 particles, and a segregated network of single-walled carbon nanotubes in the electrode, without any additional binders or carbon black. Such strategy endows the NMC811 cathode (up to 250 µm and 50 mg cm-2) with low porosity/tortuosity, ultrahigh Li+/e- conductivities and excellent mechanical property at low carbon nanotube content (1.8 wt%). It significantly improves the electrochemical reaction homogeneity along the electrode depth, meanwhile effectively inhibits the side reactions at the electrode/electrolyte interface and cracks in the NMC particles during cycling. This work emphasizes the crucial role of the electronic/ionic cooperative transportation in the performance deterioration of thick cathodes, and provide guidance for architecture optimization and performance improvement of thick electrodes toward practical applications, not just for the NMC811 cathode.

3.
PNAS Nexus ; 3(4): pgae147, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38638834

ABSTRACT

With continuing global warming and urbanization, it is increasingly important to understand the resilience of urban vegetation to extreme high temperatures, but few studies have examined urban vegetation at large scale or both concurrent and delayed responses. In this study, we performed an urban-rural comparison using the Enhanced Vegetation Index and months that exceed the historical 90th percentile in mean temperature (referred to as "hot months") across 85 major cities in the contiguous United States. We found that hot months initially enhanced vegetation greenness but could cause a decline afterwards, especially for persistent (≥4 months) and intense (≥+2 °C) episodes in summer. The urban responses were more positive than rural in the western United States or in winter, but more negative during spring-autumn in the eastern United States. The east-west difference can be attributed to the higher optimal growth temperatures and lower water stress levels of the western urban vegetation than the rural. The urban responses also had smaller magnitudes than the rural responses, especially in deciduous forest biomes, and least in evergreen forest biomes. Within each biome, analysis at 1 km pixel level showed that impervious fraction and vegetation cover, local urban heat island intensity, and water stress were the key drivers of urban-rural differences. These findings advance our understanding of how prolonged exposure to warm extremes, particularly within urban environments, affects vegetation greenness and vitality. Urban planners and ecosystem managers should prioritize the long and intense events and the key drivers in fostering urban vegetation resilience to heat waves.

4.
Sci Total Environ ; 923: 171477, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38460686

ABSTRACT

Mapping vegetation formation types in large areas is crucial for ecological and environmental studies. However, this is still challenging to distinguish similar vegetation formation types using existing predictive vegetation mapping methods, based on commonly used environmental variables and remote sensing spectral data, especially when there are not enough training samples. To solve this issue, we proposed a predictive vegetation mapping method by integrating an advanced machine learning algorithm and knowledge in an early coarse-scale vegetation map (VMK). First, we implemented classification using the random forest algorithm by integrating the early vegetation map as an auxiliary feature (VMF). Then, we determined the rationality of classified vegetation types and distinguished the confusing types, respectively, based on the knowledge of the spatial distributions and hierarchies of vegetation. Finally, we replaced each recognized unreasonable vegetation type with its corresponding reasonable vegetation type. We implemented the new method in upstream of the Yellow River based on GaoFen-1 satellite images and other environmental variables (i.e., topographical and climate variables). Results showed that the overall accuracy using the VMK method ranged from 67.7 % to 76.8 %, which was 10.9 % to 13.4 % and 3.2 % to 6.6 %, respectively, higher than that of the method without the early vegetation map (NVM) and the VMF method, based on cross-validation with 20 % to 60 % random training samples. The spatial details of the vegetation map using the VMK method were also more reasonable compared to the NVM and VMF methods. These results indicated that the VMK method can distinctly improve the mapping accuracy at the vegetation formation level by integrating knowledge of existing vegetation maps. The proposed method can largely reduce the requirements on the number of field samples, which is especially important for alpine mountains and arctic region, where collecting training samples is more difficult due to the harsh natural environment.

5.
Front Neurol ; 15: 1323878, 2024.
Article in English | MEDLINE | ID: mdl-38434201

ABSTRACT

Objective: Prolonged sleep onset latency (PSOL) and age have been linked to ischemic stroke (IS) severity and the production of chemokines and inflammation, both of which contribute to IS development. This study aimed to explore the relationship between chemokines, inflammation, and the interplay between sleep onset latency (SOL) and age in influencing stroke severity. Methods: A cohort of 281 participants with mild to moderate IS was enrolled. Stroke severity was assessed using the National Institutes of Health Stroke Scale (NIHSS), and SOL was recorded. Serum levels of macrophage inflammatory protein-1alpha (MIP-1α), macrophage inflammatory protein-1beta (MIP-1ß), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were measured. Results: NIHSS scores of middle-aged participants with PSOL were significantly higher than those with normal sleep onset latency (NSOL) (p = 0.046). This difference was also observed when compared to both the elderly with NSOL (p = 0.022), and PSOL (p < 0.001). Among middle-aged adults with PSOL, MIP-1ß exhibited a protective effect on NIHSS scores (ß = -0.01, t = -2.11, p = 0.039, R2 = 0.13). MIP-1α demonstrated a protective effect on NIHSS scores in the elderly with NSOL (ß = -0.03, t = -2.27, p = 0.027, R2 = 0.12). Conclusion: This study reveals a hitherto undocumented association between PSOL and IS severity, along with the potential protective effects of MIP-1ß in mitigating stroke severity, especially among middle-aged patients.

6.
Proc Natl Acad Sci U S A ; 121(14): e2317444121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38527208

ABSTRACT

Dust loading in West and South Asia has been a major environmental issue due to its negative effects on air quality, food security, energy supply and public health, as well as on regional and global weather and climate. Yet a robust understanding of its recent changes and future projection remains unclear. On the basis of several high-quality remote sensing products, we detect a consistently decreasing trend of dust loading in West and South Asia over the last two decades. In contrast to previous studies emphasizing the role of local land use changes, here, we attribute the regional dust decline to the continuous intensification of Arctic amplification driven by anthropogenic global warming. Arctic amplification results in anomalous mid-latitude atmospheric circulation, particularly a deepened trough stretching from West Siberia to Northeast India, which inhibits both dust emissions and their downstream transports. Large ensemble climate model simulations further support the dominant role of greenhouse gases induced Arctic amplification in modulating dust loading over West and South Asia. Future projections under different emission scenarios imply potential adverse effects of carbon neutrality in leading to higher regional dust loading and thus highlight the importance of stronger anti-desertification counter-actions such as reforestation and irrigation management.

7.
ACS Synth Biol ; 13(1): 310-318, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38150419

ABSTRACT

As a desirable microbial cell factory, Pichia pastoris has garnered extensive utilization in metabolic engineering. Nevertheless, the lack of fine-tuned gene expression components has significantly constrained the potential scope of applications. Here, a gradient strength promoter library was constructed by random hybridization and high-throughput screening. The hybrid promoter, phy47, performed best with 2.93-fold higher GFP expression levels than GAP. The broad applicability of the novel hybrid promoter variants in biotechnological production was further validated in the biosynthesis of pinene and rHuPH20 with higher titers. The upstream regulatory sequences (UASE and URSD) were identified and applied to promoters GAP and ENO1, resulting in a 34 and 43% increase and an 18 and 37% decrease in the expression level, respectively. Yeast one-hybrid analysis showed that transcription factor HAP2 activates the hybrid promoter through a direct interaction with the crucial regulatory region UASH. Furthermore, a short segment of tunable activation sequence (20 bp) was also screened, and artificial promoters were constructed in tandem with the addition of regulatory sequence, resulting in a 61% expansion of the expression range. This study provides a molecular tool and regulatory elements for further synthetic biology research in P. pastoris.


Subject(s)
Pichia , Regulatory Sequences, Nucleic Acid , Saccharomycetales , Pichia/genetics , Pichia/metabolism , Promoter Regions, Genetic/genetics , Saccharomyces cerevisiae/genetics , Gene Expression , Gene Expression Regulation, Fungal
8.
Nat Commun ; 14(1): 6434, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37852971

ABSTRACT

Climate, technologies, and socio-economic changes will influence future building energy use in cities. However, current low-resolution regional and state-level analyses are insufficient to reliably assist city-level decision-making. Here we estimate mid-century hourly building energy consumption in 277 U.S. urban areas using a bottom-up approach. The projected future climate change results in heterogeneous changes in energy use intensity (EUI) among urban areas, particularly under higher warming scenarios, with on average 10.1-37.7% increases in the frequency of peak building electricity EUI but over 110% increases in some cities. For each 1 °C of warming, the mean city-scale space-conditioning EUI experiences an average increase/decrease of ~14%/ ~ 10% for space cooling/heating. Heterogeneous city-scale building source energy use changes are primarily driven by population and power sector changes, on average ranging from -9% to 40% with consistent south-north gradients under different scenarios. Across the scenarios considered here, the changes in city-scale building source energy use, when averaged over all urban areas, are as follows: -2.5% to -2.0% due to climate change, 7.3% to 52.2% due to population growth, and -17.1% to -8.9% due to power sector decarbonization. Our findings underscore the necessity of considering intercity heterogeneity when developing sustainable and resilient urban energy systems.

9.
Environ Res ; 224: 115453, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36773641

ABSTRACT

BACKGROUND: Studies on the health effects of heat are particularly limited in Texas, a U.S. state in the top 10 highest number of annual heat-related deaths per capita from 2018 to 2020. This study assessed the effects of heat on all-cause and cause-specific mortality in 12 metropolitan statistical areas (MSAs) across Texas from 1990 to 2011. METHODS: First, we determined the heat thresholds for each MSA above which the relation between temperature and mortality is linear. We then conducted a distributed lag non-linear model for each MSA, followed by a random effects meta-analysis to estimate the pooled effects for all MSAs. We repeated this process for each mortality cause and age group to achieve the effect estimates. RESULTS: We found a 1 °C temperature increase above the heat threshold is associated with an increase in the relative risk of all-cause mortality of 0.60% (95%CI [0.39%, 0.82%]) and 1.10% (95%CI [0.65%, 1.56%]) for adults older than 75. For each MSA, the relative risk of mortality for a 1 °C temperature increase above the heat threshold ranges from 0.10% (95%CI [0.09%, 0.10%]) to 1.29% (95%CI [1.26%, 1.32%]). Moreover, elevated temperatures showed a slight decrease in cardiovascular mortality (0.37%, 95%CI [-0.35%, 1.09%]) and respiratory disease (1.97%, 95%CI [-0.11%, 4.08%]), however this effect was not considered statistically significant.. CONCLUSION: Our study found that high temperatures can significantly impact all-cause mortality in Texas, and effect estimates differ by MSA, age group, and cause of death. Our findings generate critical information on the impact of heat on mortality in Texas, providing insights for policymakers on resource allocation and strategic intervention to reduce heat-related health effects.


Subject(s)
Hot Temperature , Cause of Death , Texas , Temperature , Cities
10.
Mater Today Bio ; 19: 100573, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36816604

ABSTRACT

Temporomandibular joint (TMJ) osteoarthritis is a common osteochondral degenerative disease which can severely affect patient's mouth opening and mastication. Meloxicam (MLX), one of the most widely used non-steroidal anti-inflammatory drugs, is the main clinical therapy for the treatment of TMJ osteoarthritis. However, the clinical effect is greatly compromised because of its poor water solubility and high lipophilicity. In the present study, we developed an actively-loaded liposomal formulation, namely MLX-Ca(AC)2Lipo, using meglumine to enhance aqueous solubility and divalent metal (Ca2+) solution to improve encapsulation efficiency. By the formation of the nano-bowl shaped MLX-Ca precipitates inside the liposomes, MLX-Ca(AC)2Lipo successfully achieved an optimal encapsulation efficiency as high as 98.4% compared with previous passive loading method (60.6%). Additionally, MLX-Ca(AC)2Lipo maintained stable, and the slow drug release not only prolonged the duration of drug efficacy but also improved bioavailability. It was shown in the in vitro and in vivo tests that MLX-Ca(AC)2Lipo downregulated the synthesis of the inflammatory factors (such as prostaglandin-E2) and as a consequence reduced chondrocytes apoptosis and extracellular matrix degeneration. Furthermore, the intra-articular injection of MLX-Ca(AC)2Lipo enhanced bioinspired lubrication of TMJ, protecting the cartilage from progressive wear. In summary, MLX-Ca(AC)2Lipo with dual-functions of anti-inflammation and lubrication is a promising nanomedicine for the treatment of TMJ osteoarthritis by intra-articular injection.

11.
Pest Manag Sci ; 79(1): 45-54, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36086883

ABSTRACT

BACKGROUND: A significant variation in RNA interference (RNAi) efficiency hinders further functional gene studies and pest control application in many insects. The available double-stranded RNA (dsRNA) molecules introduced into the target cells are regarded as the crucial factor for efficient RNAi response. However, numerous studies have only focused on dsRNA stability in vivo; it is uncertain whether different dsRNA storage conditions in vitro play a role in variable RNAi efficiency among insects. RESULTS: A marker gene cardinal, which leads to white eyes when knocked-down in the red flour beetle Tribolium castaneum, was used to evaluate the effects of RNAi efficiency under different dsRNA storage conditions. We demonstrated that the dsRNA molecule is very stable under typical cryopreservation temperatures (-80 and -20 °C) within 180 days, and RNAi efficiency shows no significant differences under either low temperature. Unexpectedly, while dsRNA molecules were treated with multiple freeze-thaw cycles up to 50 times between -80/-20 °C and room temperature, we discovered that dsRNA integrity and RNAi efficiency were comparable with fresh dsRNA. Finally, when the stability of dsRNA was further measured under refrigerated storage conditions (4 °C), we surprisingly found that dsRNA is still stable within 180 days and can induce an efficient RNAi response as that of initial dsRNA. CONCLUSION: Our results indicate that dsRNA is extraordinarily stable under various temperature storage conditions that did not significantly impact RNAi efficiency in vivo insects. © 2022 Society of Chemical Industry.


Subject(s)
RNA, Double-Stranded , Tribolium , Animals , RNA, Double-Stranded/genetics , Tribolium/genetics , RNA Interference
12.
Nanoscale Adv ; 4(20): 4237-4257, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36321148

ABSTRACT

The development of microelectronic products increases the demand for on-chip miniaturized electrochemical energy storage devices as integrated power sources. Such electrochemical energy storage devices need to be micro-scaled, integrable and designable in certain aspects, such as size, shape, mechanical properties and environmental adaptability. Lithium-ion batteries with relatively high energy and power densities, are considered to be favorable on-chip energy sources for microelectronic devices. This review describes the state-of-the-art of miniaturized lithium-ion batteries for on-chip electrochemical energy storage, with a focus on cell micro/nano-structures, fabrication techniques and corresponding material selections. The relationship between battery architecture and form-factors of the cell concerning their mechanical and electrochemical properties is discussed. A series of on-chip functional microsystems created by integrating micro-lithium-ion batteries are highlighted. Finally, the challenges and future perspectives of miniaturized lithium-ion batteries are elaborated with respect to their potential application fields.

13.
Proc Natl Acad Sci U S A ; 119(46): e2214813119, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36343227

ABSTRACT

Information on urban built-up infrastructure is essential to understand the role of cities in shaping environmental, economic, and social outcomes. The lack of data on built-up heights over large areas has limited our ability to characterize urban infrastructure and its spatial variations across the world. Here, we developed a global atlas of urban built-up heights circa 2015 at 500-m resolution from the Sentinel-1 Ground Range Detected satellite data. Results show extreme gaps in per capita urban built-up infrastructure in the Global South compared with the global average, and even larger gaps compared with the average levels in the Global North. Per capita urban built-up infrastructures in some countries in the Global North are more than 30 times higher than those in the Global South. The results also show that the built-up infrastructure in 45 countries in the Global North combined, with ∼16% of the global population, is roughly equivalent to that of 114 countries in the Global South, with ∼74% of the global population. The inequality in urban built-up infrastructure, as measured by an inequality index, is large in most countries, but the largest in the Global South compared with the Global North. Our analysis reveals the scale of infrastructure demand in the Global South that is required in order to meet sustainable development goals.


Subject(s)
Sustainable Development , Cities
14.
Front Vet Sci ; 9: 953380, 2022.
Article in English | MEDLINE | ID: mdl-35928116

ABSTRACT

Neosporosis is a worldwide infectious disease caused by intracellular parasite Neospora caninum that is a major pathogen of abortion in cattle and neurological disorders in other hosts. However, limited data are available on animals exposed to N. caninum in the Qinghai-Tibetan Plateau Area (QTPA), and little is known about whether animals in the plateau area play an important role in the epidemiology of N. caninum. Therefore, indirect ELISAs based on a combination of NcSAG1 and NcGRA7 antigens were developed to examine both N. caninum-specific IgG and IgM antibodies in Tibetan sheep, yak, cow, pig, cattle, horse, chicken, camel, and donkey from the QTPA in this study. The results showed that all current species present- IgG and IgM-positive animals, and that the overall seroprevalence of N. caninum were 18.6 (703/3,782) and 48.1% (1,820/3,782) for the IgG and IgM antibodies, respectively. Further analysis found significant differences from different altitudes in IgG in Tibetan sheep and IgM in the yak. Hence, the present serological results indicate that the tested animal populations in the QTPA are suffering from N. caninum infections or have become carriers of N. caninum antibodies. To the best of our knowledge, this is the first report on current N. caninum-infected animals in the QTPA, the first epidemiology of neosporosis in cow and camel in China, and the first record of N. caninum IgM antibodies in all the surveyed animals in China. This study provides the latest valuable data on the epidemiology of neosporosis in China and in plateau areas of the world.

15.
Trends Ecol Evol ; 37(11): 1006-1019, 2022 11.
Article in English | MEDLINE | ID: mdl-35995606

ABSTRACT

Research on the evolutionary ecology of urban areas reveals how human-induced evolutionary changes affect biodiversity and essential ecosystem services. In a rapidly urbanizing world imposing many selective pressures, a time-sensitive goal is to identify the emergent issues and research priorities that affect the ecology and evolution of species within cities. Here, we report the results of a horizon scan of research questions in urban evolutionary ecology submitted by 100 interdisciplinary scholars. We identified 30 top questions organized into six themes that highlight priorities for future research. These research questions will require methodological advances and interdisciplinary collaborations, with continued revision as the field of urban evolutionary ecology expands with the rapid growth of cities.


Subject(s)
Ecosystem , Urbanization , Biodiversity , Cities , Ecology/methods , Humans
16.
Sci Total Environ ; 844: 157253, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35817114

ABSTRACT

Agriculture is a major water user, especially in dry and drought-prone areas that rely on irrigation to support agricultural production. In recent years, the over-extraction of groundwater, exacerbated by climate change, population growth, and intensive agricultural irrigation, has led to a drop in water levels and influenced the hydrological cycle. Understanding changes in hydrological processes is essential for pursuing water sustainability. This study aims to estimate the amount and impact of irrigation on hydrological processes in two breadbasket regions, Jing-Jin-Ji (JJJ), China, and northern Texas (NTX), US. We used the Soil and Water Assessment Tool (SWAT) to explore spatiotemporal variations of irrigation from 2008 to 2013 and compared changes in hydrological processes caused by irrigation. The results indicated that deficit irrigation is more common in JJJ than in NTX and can reduce approximately 50 % of irrigation water use in areas with intensively irrigated cropland. The applied irrigation varies less over time in NTX but fluctuates in JJJ. Compared with NTX, the higher irrigation intensity in JJJ results in a more significant change in downstream peak streamflow of around 6 m3/s. Moreover, the difference in crop growing seasons can lead to different impacts of irrigation on hydrological processes. For example, the percentage change of surface runoff under real-world relative to the no-irrigation scenario was the greatest, around 40 %, in JJJ and NTX. However, the peak change occurred at different times, with the nearing maturity of winter wheat in May in JJJ and corn in August in NTX. The great potential to reduce groundwater extraction by adopting water conservation irrigation techniques calls for policies and regulations to help farmers shift towards more sustainable water management practices.


Subject(s)
Groundwater , Hydrology , Agricultural Irrigation/methods , Agriculture/methods , Water
17.
Nanomaterials (Basel) ; 12(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35269307

ABSTRACT

Topological phases of matter with robust edge states have revolutionized the fundamental intuitions for wave control. The recent development of higher-order topological insulators (HOTIs) realizes even lower dimensional topological states that enable versatile wave manipulations (e.g., light imaging). However, in conventional HOTIs, the topological states are usually protected by certain crystalline symmetries and therefore bounded at specific locations, hindering their applications in modern digital ears, which often prefer tunability and reconfigurability. Here, we report the reconfigurable light imaging based on topological corner states and anti-chiral edge states in a two-dimensional (2D) photonic HOTI with a honeycomb lattice of yttrium iron garnet (YIG, a ferrite material) rods. Sublattices A and B are applied with magnetic fields in opposite directions, which realize the so-called modified Haldane model that hosts anti-chiral edge modes. By further breaking the lattice's inversion symmetry via adjusting the radii of A and B rods, topological edge states with valley degrees of freedom emerge, which not only exhibit valley-dependence but also surprisingly show anti-chiral behaviors. In the valley edge gap, which is of nontrivial higher-order topology, corner states appear. With different combinations of corner states and anti-chiral edge states, versatile reconfigurable light imaging can be realized. As examples, a multiplexing waveguide-resonator device, a pine tree imaging that can be lit up or put out at will and selective imaging for partial objects in a two-heart pattern are demonstrated. The proposed HOTI shows high potential in future intelligent devices with exciting tunable and reconfigurable functions, which may inspire a wide range of applications such as topological switching, imaging processing, and nonreciprocal integrated photonics.

18.
19.
Sci Total Environ ; 817: 153012, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35026278

ABSTRACT

An improved understanding of global Urban Exposure to Flooding (UEF) is essential for developing risk-reduction strategies for sustainable urban development. This study is the first to assess the long-term historical global UEF at a fine spatial resolution (i.e., 30 m) and annual temporal frequency, with consideration of smaller urban areas in the exposure assessment compared to those using coarse resolution data. We assessed the UEF by investigating the spatially explicit urban expansion in the 100-year floodplain extents. The global UEF increased more than four-fold from 16,443 km2 in 1985 to 92,233 km2 in 2018 with accelerated temporal trends. The most notable growth in UEF occurred in Asia (74.1%), followed by Europe (11.6%), Northern America (8.7%), Africa (2.9%), Southern America (2.2%), and Australia (0.5%). Notably, China and US were the two countries with the largest UEF, accounting for about 61.5% of global growth in UEF. In addition, only 1.2% of global floodplains were occupied by urban expansion by 2018, whereas this percentage reached 20% in the basins of Western Europe, Eastern Asia, and Northeastern US. Moreover, although the floodplains only accounted for 5.5% of the global land areas, 12.6% of the urban expansion occurred in the floodplains from 1985 to 2018, with the most rapid increases in the basins in Southeastern and Eastern China. Our findings highlight that the trends of accelerated increasing urban exposure to flooding have been occurring for at least the past three decades.


Subject(s)
Floods , Asia , China , Europe , South America
20.
Environ Res ; 204(Pt A): 111937, 2022 03.
Article in English | MEDLINE | ID: mdl-34464616

ABSTRACT

Ongoing climate variability and change is impacting pollen exposure dynamics among sensitive populations. However, pollen data that can provide beneficial information to allergy experts and patients alike remains elusive. The lack of high spatial resolution pollen data has resulted in a growing interest in using phenology information that is derived using satellite observations to infer key pollen events including start of pollen season (SPS), timing of peak pollen season (PPS), and length of pollen season (LPS). However, it remains unclear if the agreement between satellite-based phenology information (e.g. start of season: SOS) and the in-situ pollen dynamics vary based on the type of satellite product itself or the processing methods used. To address this, we investigated the relationship between vegetation phenology indicator (SOS) derived from two separate sensor/satellite observations (MODIS, Landsat), and two different processing methods (double logistic regression (DLM) vs hybrid piecewise logistic regression (HPLM)) with in-situ pollen season dynamics (SPS, PPS, LPS) for three dominant allergenic tree pollen species (birch, oak, and poplar) that dominate the springtime allergy season in North America. Our results showed that irrespective of the data processing method (i.e. DLM vs HPLM), the MODIS-based SOS to be more closely aligned with the in-situ SPS, and PPS while upscaled Landsat based SOS had a better precision. The data products obtained using DLM processing methods tended to perform better than the HPLM based methods. We further showed that MODIS based phenology information along with temperature and latitude can be used to infer in-situ pollen dynamic for tree pollen during spring time. Our findings suggest that satellite-based phenology information may be useful in the development of early warning systems for allergic diseases.


Subject(s)
Climate , Pollen , Climate Change , Satellite Imagery , Seasons , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...