Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Pharm Biomed Anal ; 201: 114088, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33957363

ABSTRACT

This study aimed to compare the gene expression variation of clinical primary osteosarcoma (OS) and metastatic OS, identify expression profiles and signal pathways related to disease classification, and systematically evaluate the potential anticancer effect and molecular mechanism of ginsenoside Rh2 on OS. A raw dataset (GSE14359), which excluded GSM359137 and GSM359138, was downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) and principal component analysis (PCA) were obtained with limma. Pathways enrichment analysis was understood by GSEA app. Rh2-associated targets were harvested and mapped through PharmMapper and Cytoscape 3.4.0. The toxicity of Rh2 was determined using crystal staining and MTT assay on 143B and MG63 cell lines. The relative protein expression was confirmed through Western blot analysis. The mitochondrial membrane potential (△Ψm) was evaluated by JC-1 fluorescence staining. The cell mobility was measured via wound healing and transwell assays. A total of 752 genes were upregulated, while 161 genes were downregulated. GSEA and PCA displayed significant function enrichment and classification. Through PharmMapper and Cytoscape 3.4.0, Rh2 was found to target the mitogen activated protein kinase (MAPK) and PI3K signaling pathways, which are the key pathways in the metastasis of OS. Furthermore, Rh2 induced a concentration-dependent decrease in cell viability and early apoptosis associated with ΔΨm decline, while a non-lethal dose of Rh2 weakened the metastatic capability. Moreover, systematic evaluation showed that promoting the MAPK signaling pathway and inhibiting PI3K/Akt/mTOR were correlated with the anticancer effects of Rh2 on metastatic OS. In conclusion, transcriptome-derived approaches may be beneficial in diagnosing early metastases, and Rh2, a multi-targeting agent, shows promising application potential in suppressing metastatic OS in an MAPK- and PI3K/Akt/mTOR-dependent manner.


Subject(s)
Bone Neoplasms , Osteosarcoma , Apoptosis , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Computational Biology , Ginsenosides , Humans , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Phosphatidylinositol 3-Kinases/genetics
3.
Article in English | MEDLINE | ID: mdl-32733585

ABSTRACT

Osteosarcoma (OS) is the most common primary malignant bone cancer. An increasing number of studies have demonstrated that ginsenoside Rg3 (Rg3), which is extracted from the roots of the traditional Chinese herb Panax ginseng, plays a tumor suppression role in various malignant tumors. In the present study, we aimed at investigating the role of Rg3 in the proliferation, migration, and invasion of OS and at exploring the underlying mechanisms. Cell viability and proliferation were observed by MTT assay and crystal violet staining. The migration and invasion of cells were measured by wound-healing assay and Transwell method. Signaling pathway screening was investigated using luciferase reporter gene assay. qRT-PCR and western blot were performed to measure the expression of molecules involved in cell epithelial-mesenchymal transition (EMT), and Wnt/ß-catenin pathway. Results suggested that Rg3 could not only inhibit proliferation but also hamper the migration and invasion of OS. qRT-PCR and western blot demonstrated that a reduced level of MMP2/MMP7/MMP9 was induced after Rg3 treatment. In addition, the expression levels of proteins related to EMT and the Wnt/ß-catenin pathway were downregulated. In summary, our data revealed that Rg3 could inhibit the proliferation, migration, and invasion of OS cells. This effect of Rg3 might be mediated by downregulating MMP2, MMP7, and MMP9 expression and suppressing EMT as well as the Wnt/ß-catenin pathway. Thus, Rg3 might be a potential agent for the treatment of OS.

SELECTION OF CITATIONS
SEARCH DETAIL
...