Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 10: 313, 2010 Dec 07.
Article in English | MEDLINE | ID: mdl-21138563

ABSTRACT

BACKGROUND: Oomycetes attack a huge variety of economically and ecologically important plants. These pathogens release, detect and respond to signal molecules to coordinate their communal behaviors including the infection process. When signal molecules are present at or above threshold level, single zoospores can infect plants. However, at the beginning of a growing season population densities of individual species are likely below those required to reach a quorum and produce threshold levels of signal molecules to trigger infection. It is unclear whether these molecules are shared among related species and what their chemistries are. RESULTS: Zoospore-free fluids (ZFF) from Phytophthora capsici, P. hydropathica, P. nicotianae (ZFFnic), P. sojae (ZFFsoj) and Pythium aphanidermatum were cross tested for stimulating plant infection in three pathosystems. All ZFFs tested significantly increased infection of Catharanthus roseus by P. nicotianae. Similar cross activities were observed in infection of Lupinus polyphyllus and Glycine max by P. sojae. Only ZFFnic and ZFFsoj cross induced zoospore aggregation at a density of 2 × 10³ ml⁻¹. Pure autoinducer-2 (AI-2), a component in ZFF, caused zoospore lysis of P. nicotianae before encystment and did not stimulate plant infection at concentrations from 0.01 to 1000 µM. P. capsici transformants with a transiently silenced AI-2 synthase gene, ribose phosphate isomerase (RPI), infected Capsicum annuum seedlings at the same inoculum concentration as the wild type. Acyl-homoserine lactones (AHLs) were not detected in any ZFFs. After freeze-thaw treatments, ZFF remained active in promoting plant infection but not zoospore aggregation. Heat treatment by boiling for 5 min also did not affect the infection-stimulating property of ZFFnic. CONCLUSION: Oomycetes produce and use different molecules to regulate zoospore aggregation and plant infection. We found that some of these signal molecules could act in an inter-specific manner, though signals for zoospore aggregation were somewhat restricted. This self-interested cooperation among related species gives individual pathogens of the same group a competitive advantage over pathogens and microbes from other groups for limited resources. These findings help to understand why these pathogens often are individually undetectable until severe disease epidemics have developed. The signal molecules for both zoospore aggregation and plant infection are distinct from AI-2 and AHL.


Subject(s)
Phytophthora/physiology , Plant Diseases/parasitology , Signal Transduction , Spores/physiology , Acyl-Butyrolactones/metabolism , Aldose-Ketose Isomerases/genetics , Aldose-Ketose Isomerases/metabolism , Capsicum/growth & development , Capsicum/parasitology , Lupinus/growth & development , Lupinus/parasitology , Phytophthora/classification , Phytophthora/genetics , Glycine max/growth & development , Glycine max/parasitology , Spores/genetics
2.
J Org Chem ; 64(22): 8334-8341, 1999 Oct 29.
Article in English | MEDLINE | ID: mdl-11674756

ABSTRACT

Antibodies SZ-cis-39C11 and SZ-trans-28F8, which were elicited in response to N-aryl-3-methoxyphenyl proline derivatives, catalyze the [2,3]-sigmatropic rearrangement of allylic sulfoxides to sulfenates. Reduction of the sulfenates with dithiothreitol in situ yields allylic alcohols as the final product. The antibodies achieve rate accelerations in the range 10(2)-10(3) over background and exhibit distinctive hapten-dependent substrate specificity and enantio- and diastereoselectivity. Of particular note is the effective chirality transfer from the sulfoxide center to the product alcohol in the SZ-cis-39C11-catalyzed conversion of (Z)-2-(4-methoxyphenyl)-but-2-en-1-yl 4-nitrophenyl sulfoxide. These properties can be contrasted with those of bovine serum albumin (BSA) which accelerates the same reactions to a comparable extent but does not discriminate between substrate isomers. Partitioning of substrate from aqueous solution into the less polar environment of the protein pocket can account for much of the observed rate enhancement, whereas specific conformational constraints programmed by the haptens must orient the flexible substrate within the induced antibody-combining sites so as to favor certain reaction pathways over others. These studies thus expand the scope of antibody catalysis to an important new class of pericyclic reactions and illustrate how medium effects can be exploited together with conformational constraint to control reactivity and selectivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...