Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Neurobiol Learn Mem ; 165: 106961, 2019 11.
Article in English | MEDLINE | ID: mdl-30447288

ABSTRACT

Mutations in the methyl-CpG binding protein 2 (MECP2) gene cause Rett syndrome (RTT), a progressive X-linked neurological disorder characterized by loss of developmental milestones, intellectual disability and breathing abnormality. Despite being a monogenic disorder, the pathogenic mechanisms by which mutations in MeCP2 impair neuronal function and underlie the RTT symptoms have been challenging to elucidate. The seemingly simple genetic root and the availability of genetic data from RTT patients have led to the generation and characterization of a series of mouse models recapitulating RTT-associated genetic mutations. This review focuses on the studies of RTT mouse models and describe newly obtained pathogenic insights from these studies. We also highlight the potential of studying pathophysiology using genetics-based modeling approaches in rodents and suggest a future direction to tackle the pathophysiology of intellectual disability with known or complex genetic causes.


Subject(s)
Rett Syndrome/genetics , Animals , Disease Models, Animal , Humans , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Mice , Rett Syndrome/physiopathology
2.
Front Biol (Beijing) ; 12(1): 1-6, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28580010

ABSTRACT

BACKGROUND: The discovery that mutations in cyclin-dependent kinase-like 5 (CDKL5) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research. METHODS: A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section. RESULTS: On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage. CONCLUSIONS: Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes.

3.
Front Biol (Beijing) ; 7(5): 428-435, 2012 Oct.
Article in English | MEDLINE | ID: mdl-24999353

ABSTRACT

Rett syndrome is an Autism Spectrum Disorder caused by mutations in the gene encoding methyl-CpG binding protein (MeCP2). Following a period of normal development, patients lose learned communication and motor skills, and develop a number of symptoms including motor disturbances, cognitive impairments and often seizures. In this review, we discuss the role of MeCP2 in regulating synaptic function and how synaptic dysfunctions lead to neuronal network impairments and alterations in sensory information processing. We propose that Rett syndrome is a disorder of neural circuits as a result of non-linear accumulated dysfunction of synapses at the level of individual cell populations across multiple neurotransmitter systems and brain regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...