Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Res ; 34(5): 355-369, 2024 May.
Article in English | MEDLINE | ID: mdl-38448650

ABSTRACT

Rheb is a small G protein that functions as the direct activator of the mechanistic target of rapamycin complex 1 (mTORC1) to coordinate signaling cascades in response to nutrients and growth factors. Despite extensive studies, the guanine nucleotide exchange factor (GEF) that directly activates Rheb remains unclear, at least in part due to the dynamic and transient nature of protein-protein interactions (PPIs) that are the hallmarks of signal transduction. Here, we report the development of a rapid and robust proximity labeling system named Pyrococcus horikoshii biotin protein ligase (PhBPL)-assisted biotin identification (PhastID) and detail the insulin-stimulated changes in Rheb-proximity protein networks that were identified using PhastID. In particular, we found that the lysosomal V-ATPase subunit ATP6AP1 could dynamically interact with Rheb. ATP6AP1 could directly bind to Rheb through its last 12 amino acids and utilizes a tri-aspartate motif in its highly conserved C-tail to enhance Rheb GTP loading. In fact, targeting the ATP6AP1 C-tail could block Rheb activation and inhibit cancer cell proliferation and migration. Our findings highlight the versatility of PhastID in mapping transient PPIs in live cells, reveal ATP6AP1's role as an unconventional GEF for Rheb, and underscore the importance of ATP6AP1 in integrating mTORC1 activation signals through Rheb, filling in the missing link in Rheb/mTORC1 activation.


Subject(s)
Ras Homolog Enriched in Brain Protein , Humans , Ras Homolog Enriched in Brain Protein/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , HEK293 Cells , Guanine Nucleotide Exchange Factors/metabolism , Protein Binding , Signal Transduction , Cell Line, Tumor
2.
Stem Cells Dev ; 32(11-12): 331-345, 2023 06.
Article in English | MEDLINE | ID: mdl-36924305

ABSTRACT

Stem cell exhaustion is a hallmark of aging. Klotho-deficient mice (kl/kl mice) is a murine model that mimics human aging with significant bone abnormalities. The aim of this study is using kl/kl mice to investigate the functional change of bone marrow-derived mesenchymal stem cells (BMSCs) and explore the underlying mechanism. We found that klotho deficiency leads to bone abnormalities. In addition, kl/kl BMSCs manifested hyperactive proliferation but functionally declined both in vivo and in vitro. Mammalian target of rapamycin complex 1 (mTORC1) activity was higher in freshly isolated kl/kl BMSCs, and autophagy in kl/kl BMSCs was significantly decreased, possibly through mTORC1 activation. Conditional medium containing soluble Klotho protein (sKL) rescued hyperproliferation of kl/kl BMSCs by inhibiting mTORC1 activity and restoring autophagy. Finally, intraperitoneal injection of mTORC1 inhibitor rapamycin restored BMSC quiescence, ameliorated bone phenotype, and increased life span of kl/kl mice in vivo. This research highlights a therapeutic strategy to maintain the homeostasis of adult stem cell pool for healthy bone aging.


Subject(s)
Aging, Premature , Mesenchymal Stem Cells , Mice , Animals , Humans , Aging, Premature/genetics , Glucuronidase/genetics , Glucuronidase/metabolism , Bone Marrow/metabolism , Aging , Mesenchymal Stem Cells/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mammals/metabolism
3.
Nat Commun ; 13(1): 2543, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538070

ABSTRACT

Bone metastases occur in 50-70% of patients with late-stage breast cancers and effective therapies are needed. The expression of enhancer of zeste homolog 2 (EZH2) is correlated with breast cancer metastasis, but its function in bone metastasis hasn't been well-explored. Here we report that EZH2 promotes osteolytic metastasis of breast cancer through regulating transforming growth factor beta (TGFß) signaling. EZH2 induces cancer cell proliferation and osteoclast maturation, whereas EZH2 knockdown decreases bone metastasis incidence and outgrowth in vivo. Mechanistically, EZH2 transcriptionally increases ITGB1, which encodes for integrin ß1. Integrin ß1 activates focal adhesion kinase (FAK), which phosphorylates TGFß receptor type I (TGFßRI) at tyrosine 182 to enhance its binding to TGFß receptor type II (TGFßRII), thereby activating TGFß signaling. Clinically applicable FAK inhibitors but not EZH2 methyltransferase inhibitors effectively inhibit breast cancer bone metastasis in vivo. Overall, we find that the EZH2-integrin ß1-FAK axis cooperates with the TGFß signaling pathway to promote bone metastasis of breast cancer.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Enhancer of Zeste Homolog 2 Protein , Focal Adhesion Kinase 1 , Focal Adhesion Protein-Tyrosine Kinases , Integrin beta1 , Transforming Growth Factor beta , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Humans , Integrin beta1/genetics , Integrin beta1/metabolism , Signal Transduction , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
4.
iScience ; 25(2): 103813, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35198878

ABSTRACT

Most tumor cells reactivate telomerase to ensure unlimited proliferation, whereas the expression of human telomerase reverse transcriptase (hTERT) is tightly regulated and rate-limiting for telomerase activity maintenance. Several general transcription factors (TFs) have been found in regulating hTERT transcription; however, a systematic study is lacking. Here we performed an inducible CRISPR/Cas9 KO screen using an hTERT core promoter-driven reporter. We identified numerous positive regulators including an E3 ligase DTX2. In telomerase-positive cancer cells, DTX2 depletion downregulated hTERT transcription and telomerase activity, contributing to progressive telomere shortening, growth arrest, and increased apoptosis. Utilizing BioID, we characterized multiple TFs as DTX2 proximal proteins, among which NFIC functioned corporately with DTX2 in promoting hTERT transcription. Further analysis demonstrated that DTX2 mediated K63-linked ubiquitination of NFIC, which facilitated NFIC binding to the hTERT promoter and enhanced hTERT expression. These findings highlight a new hTERT regulatory pathway that may be exploited for potential cancer therapeutics.

5.
Sci Transl Med ; 12(545)2020 05 27.
Article in English | MEDLINE | ID: mdl-32461334

ABSTRACT

The functions of immune cells in brain metastases are unclear because the brain has traditionally been considered "immune privileged." However, we found that a subgroup of immunosuppressive neutrophils is recruited into the brain, enabling brain metastasis development. In brain metastatic cells, enhancer of zeste homolog 2 (EZH2) is highly expressed and phosphorylated at tyrosine-696 (pY696)-EZH2 by nuclear-localized Src tyrosine kinase. Phosphorylation of EZH2 at Y696 changes its binding preference from histone H3 to RNA polymerase II, which consequently switches EZH2's function from a methyltransferase to a transcription factor that increases c-JUN expression. c-Jun up-regulates protumorigenic inflammatory cytokines, including granulocyte colony-stimulating factor (G-CSF), which recruits Arg1+- and PD-L1+ immunosuppressive neutrophils into the brain to drive metastasis outgrowth. G-CSF-blocking antibodies or immune checkpoint blockade therapies combined with Src inhibitors impeded brain metastasis in multiple mouse models. These findings indicate that pY696-EZH2 can function as a methyltransferase-independent transcription factor to facilitate the brain infiltration of immunosuppressive neutrophils, which could be clinically targeted for brain metastasis treatment.


Subject(s)
Brain Neoplasms , Enhancer of Zeste Homolog 2 Protein , Animals , Enhancer of Zeste Homolog 2 Protein/metabolism , Histones , Mice , Neutrophils/metabolism , Transcription Factors/metabolism
6.
Front Cell Dev Biol ; 7: 337, 2019.
Article in English | MEDLINE | ID: mdl-31921849

ABSTRACT

The reduction of protein translation is a common feature in senescent cells and aging organisms, yet the underlying mechanisms are not fully understood. Here we show that both global mRNA translation and mammalian/mechanistic target of rapamycin complex 1 (mTORC1) kinase activity are declined in a senescent model of mouse embryonic fibroblasts (MEFs). Furthermore, RNA-seq analyses from polysomal versus total mRNA fractions identify TOP-like mRNA of Rps15 whose translation is regulated by mTORC1 during MEF senescence. Overexpression of Rps15 delays MEF senescence, possibly through regulating ribosome maturation. Together, these findings indicate that the activation of mTORC1-Rps15 axis ameliorate senescence by regulating ribosome biogenesis, which may provide further insights into aging research.

7.
Cancer Res ; 78(9): 2248-2261, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29440169

ABSTRACT

The role of pyruvate kinase M2 isoform (PKM2) in tumor progression has been controversial. Previous studies showed that PKM2 promoted tumor growth in xenograft models; however, depletion of PKM2 in the Brca1-loss-driven mammary tumor mouse model accelerates tumor formation. Because oncogenic kinases are frequently activated in tumors and PKM2 phosphorylation promotes tumor growth, we hypothesized that phosphorylation of PKM2 by activated kinases in tumor cells confers PKM2 oncogenic function, whereas nonphosphorylated PKM2 is nononcogenic. Indeed, PKM2 was phosphorylated at tyrosine 105 (Y105) and formed oncogenic dimers in MDA-MB-231 breast cancer cells, whereas PKM2 was largely unphosphorylated and formed nontumorigenic tetramers in nontransformed MCF10A cells. PKM2 knockdown did not affect MCF10A cell growth but significantly decreased proliferation of MDA-MB-231 breast cancer cells with tyrosine kinase activation. Multiple kinases that are frequently activated in different cancer types were identified to phosphorylate PKM2-Y105 in our tyrosine kinase screening. Introduction of the PKM2-Y105D phosphomimetic mutant into MCF10A cells induced colony formation and the CD44hi/CD24neg cancer stem-like cell population by increasing Yes-associated protein (YAP) nuclear localization. ErbB2, a strong inducer of PKM2-Y105 phosphorylation, boosted nuclear localization of YAP and enhanced the cancer stem-like cell population. Treatment with the ErbB2 kinase inhibitor lapatinib decreased PKM2-Y105 phosphorylation and cancer stem-like cells, impeding PKM2 tumor-promoting function. Taken together, phosphorylation of PKM2-Y105 by activated kinases exerts oncogenic functions in part via activation of YAP downstream signaling to increase cancer stem-like cell properties.Significance: These findings reveal PKM2 promotes tumorigenesis by inducing cancer stem-like cell properties and clarify the paradox of PKM2's dichotomous functions in tumor progression. Cancer Res; 78(9); 2248-61. ©2018 AACR.


Subject(s)
Carrier Proteins/metabolism , Membrane Proteins/metabolism , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Oncogene Proteins/metabolism , Thyroid Hormones/metabolism , Animals , Biomarkers , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Humans , Immunohistochemistry , Mice , Mice, Transgenic , Models, Biological , Neoplasms/genetics , Neoplasms/pathology , Phosphorylation , Signal Transduction , Thyroid Hormone-Binding Proteins
8.
J Biol Chem ; 289(49): 34024-32, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25294876

ABSTRACT

Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) has been shown to be involved in gene silencing and DNA damage. However, the exact mechanisms of how SMCHD1 participates in DNA damage remains largely unknown. Here we present evidence that SMCHD1 recruitment to DNA damage foci is regulated by 53BP1. Knocking out SMCHD1 led to aberrant γH2AX foci accumulation and compromised cell survival upon DNA damage, demonstrating the critical role of SMCHD1 in DNA damage repair. Following DNA damage induction, SMCHD1 depletion resulted in reduced 53BP1 foci and increased BRCA1 foci, as well as less efficient non-homologous end joining (NHEJ) and elevated levels of homologous recombination (HR). Taken together, these results suggest an important function of SMCHD1 in promoting NHEJ and repressing HR repair in response to DNA damage.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , DNA End-Joining Repair/genetics , DNA, Neoplasm/metabolism , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/genetics , Recombinational DNA Repair/genetics , Antibiotics, Antineoplastic/pharmacology , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Bleomycin/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Chromosomal Proteins, Non-Histone/metabolism , DNA Breaks, Double-Stranded/drug effects , DNA End-Joining Repair/drug effects , HeLa Cells , Histones/genetics , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Recombinational DNA Repair/drug effects , Signal Transduction , Tumor Suppressor p53-Binding Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...