Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 253: 114688, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36842277

ABSTRACT

The soil contamination caused by the discharge of cadmium (Cd) from coal mining activities has aroused continuous attention due to the detrimental effects on the human health. This study aimed to investigate the characteristics on distribution of Cd in soils and its accumulation in wheat grains under wheat-cultivation system, and further assess the human health risks to adults and children. 58 soils and wheat samples in pairs from Linhuan coal mining area, Anhui Province were collected and analyzed. Results showed that the concentrations of Cd in 17.24% of soil samples exceeded the limit value established by the Ministry of Ecology and Environment. The ordinary kriging interpolation displayed that the spatial variability of Cd concentrations in soils was mainly influenced by coal mining activities. The transfer capacity of Cd from soils to wheat roots was greater than that from the wheat roots to grains. Multiple linear regression model clarified that soil pH and exchangeable Cd fraction in soils were the critical factors affecting the Cd accumulation in wheat grains. The carcinogenic risk of Cd levels in our studied wheat grains was a concern but still within the acceptable range, while their non-carcinogenic hazard was negligible for adults and children. The calculation results were in accord with the uncertainty analysis conclusion based on Monte Carlo simulation. The study was expected to promote the source management and control strategy of reducing tailing discharge, and providing scientific references for current soil remediation and land degradation prevention.


Subject(s)
Coal Mining , Metals, Heavy , Soil Pollutants , Adult , Child , Humans , Cadmium/metabolism , Soil , Triticum/metabolism , Environmental Monitoring , Soil Pollutants/analysis , China , Risk Assessment , Metals, Heavy/analysis
2.
Environ Pollut ; 315: 120400, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36228856

ABSTRACT

Chromium (Cr) in solid wastes from ultra-low emission (ULE) coal-fired power plants (CFPPs) could engender adverse effects on environment and human health. Hence, solid waste samples containing bottom ash, fly ash, gypsum and sludge were collected from a typical ULE CFPP in China to study the distribution, speciation, bioaccessibility and human health risk of Cr. The results showed that Cr was depleted in gypsum, whereas significantly enriched in bottom ash, fly ash and sludge comparing with feed coal. The ratios of Cr(VI) to total Cr in solid wastes were relatively low, but the increase of flow fractions in Cr chemical binding forms implied the deterioration of environmental stability. Based on the in vitro simulated digestion methods of solubility bioavailability research consortium (SBRC) and physiologically based extraction test (PBET), the bioaccessibility of Cr in the gastric and intestinal phases reached the highest values in either gypsum or sludge. After incorporating bioaccessibility in human health risk assessment, the carcinogenic risk (CR) within acceptable limits of Cr in solid wastes to adults and children was concluded, with the non-carcinogenic hazard quotient (HQ) was all within the safety threshold. The Monte Carlo model was applied to evaluate the uncertainty analysis of human health risk assessment at 5% and 95% confidence interval, and the fitting results were consistent with the calculation results of the carcinogenic and non-carcinogenic risk for adults and children. This study is expected to provide insights for the integration of bioaccessibility into the health risk assessment of Cr in solid wastes from ULE CFPPs, thus is conducive to the disposal of solid wastes and human health protection.


Subject(s)
Coal Ash , Solid Waste , Adult , Child , Humans , Coal Ash/analysis , Solid Waste/analysis , Chromium/analysis , Calcium Sulfate/analysis , Sewage/analysis , Power Plants , Coal/analysis , Risk Assessment , China
SELECTION OF CITATIONS
SEARCH DETAIL
...