Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(6): 9306-9315, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571168

ABSTRACT

Understanding and directing the energy transfer in nanocrystals-chromophore heterostructure is critical to improve the efficiency of their photocatalytic and optoelectronic applications. In this work, we studied the energy transfer process between inorganic-organic molecular complexes composed of cesium halide perovskite nanoplatelets (CsPbBr3 NPLs) and boron dipyrromethene (BODIPY) by photoluminescence spectroscopy (PL), time-correlated single photon-counting (TCSPC) and femtosecond transient absorption spectroscopy. The quenching of PL in CsPbBr3 NPLs occurred simultaneously with the PL enhancement of BODIPY implied the singlet energy transfer process. The rate of energy transfer has been determined by transient absorption spectrum as kET = 3.8 × 109 s-1. The efficiency of Förster energy transfer (FRET) has been quantitatively calculated up to 70%. Our work advances the understanding of the interaction between BODIPY and perovskite nanoplatelets, providing a new solution based on their optoelectronic and photocatalytic applications.

2.
Phys Chem Chem Phys ; 25(14): 10071-10081, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36971073

ABSTRACT

The development of singlet fission (SF) is greatly hindered by the severe shortage of the types and numbers of SF materials. Here, essential energy conditions and SF-related competitive processes of a series of BPEA derivatives, which are a kind of new promising SF material, are investigated theoretically. Encouraging advantages and interesting laws of key energy conditions of those derivatives were found and potential BPEA derivatives were predicted. Those derivatives present mild exothermic SF processes with 0.3-0.4 eV free energies (ΔE(S1-2T1)) consistently. Their lowest triplet states (T1) are stable and totally enter into the ideal energy window (≥1.0 eV), which is beneficial for achieving the maximum efficiency of PCE. Their large ΔE(T2-2T1) can suppress the higher-state annihilation of T1 well. The E(S1) and ΔE(S1-2T1) of the derivatives are sensitive to both the slip patterns of the dimer and ending substituents. Terminal substituents with both strong electron-withdrawing and electron-donating abilities can lower E(S1), and decreases in the former are more obvious due to the larger intramolecular charge transfer. Interestingly, it is found firstly that the terminal substituent modulation effect on E(S1) and ΔE(S1-2T1) is more effective when large longitudinal slips are included in their stacking modes. The reason is that the direction of the transition dipole moments (µs1) is along X, and large longitudinal slips will bring about the approach of positive and negative charge centers of monomers, and lead to large Davydov splitting. By further evaluation of important radiation and non-radiation processes, it is predicted that the BPEA-based derivatives, which have rigid -Cl, -Br, or -CN terminals and include large longitudinal slips in their crystal packing, are expected to achieve excellent SF performances. Our work provides useful ideas for developing or optimizing acene-derivative SF materials with high efficiency.

3.
Opt Express ; 31(2): 2593-2601, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785269

ABSTRACT

Two-dimensional transition metal dichalcogenides with outstanding properties open up a new way to develop optoelectronic devices such as phototransistors and light-emitting diodes. Heterostructure with light-harvesting materials can produce many photogenerated carriers via charge and/or energy transfer. In this paper, the ultrafast dynamics of charge transfer in zero-dimensional CsPbBr3 quantum dot/two-dimensional MoS2 van der Waals heterostructures are investigated through femtosecond time-resolved transient absorption spectroscopy. Hole and electron transfers in the ps and fs magnitude at the interfaces between MoS2 and CsPbBr3 are observed by modulating pump wavelengths of the pump-probe configurations. Our study highlights the opportunities for realizing the exciton devices based on quantum dot/two-dimensional semiconductor heterostructures.

4.
Opt Express ; 30(20): 36541-36551, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36258580

ABSTRACT

Quasi-2D Ruddlesden-Popper perovskites attract great attention as an optical gain media in lasing applications due to their excellent optoelectronic properties. Herein, a novel quasi-2D Ruddlesden-Popper perovskite based on 2-thiophenemethylammonium (ThMA) is synthesized by a facile solution-processed method. In addition, an anti-solvent treatment method is proposed to tune the phase distribution, and preferential orientation of quasi-2D (ThMA)2Csn-1PbnBr3n+1 thin films. The large-n-dominated narrow domain distribution improves the energy transfer efficiency from small-n to large-n phases. Also, the highly oriented nanocrystals facilitate the efficient Förster energy transfer, beneficial for the carrier population transfer. Furthermore, a green amplified spontaneous emission with a low threshold of 13.92 µJ/cm2 is obtained and a single-mode vertical-cavity laser with an 0.4 nm linewidth emission is fabricated. These findings provide insights into the design of the domain distribution to realize low-threshold multicolor continuous-wave or electrically driven quasi-2D perovskites laser.

5.
Nanotechnology ; 32(45)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34325407

ABSTRACT

Multiexcitons generation is a process of generating electron-hole pairs in nanostructured semiconductors by absorbing a single high-energy photon. The multiexciton process is essential for the performance of optoelectronic devices based on perovskite nanomaterials. In this paper, ultrafast time-resolved transient absorption spectroscopy is used to study the ultrafast dynamics of CsPbBr3nanocrystals. It is found that the multiexcitons Auger recombination lifetime increases with the decrease of pump fluence, while it is on the contrary for the hot carrier cooling time. The increase in the number of photons absorbed by each nanocrystal under high pump fluence slows down the relaxation of hot carriers to the band edge. The hot carrier cooling lifetime increases from 0.25 to 0.85 ps when the pump fluence increases from 6 to 127µJ cm-2. Temperature-dependent transient absorption spectroscopy exhibits that the relaxation process of hot carriers slows down sharply when the lattice temperature decreases from 280 to 80 K. Moreover, the exciton binding energy 46 meV of CsPbBr3nanocrystals is obtained by temperature-dependent steady-state photoluminescence spectroscopy. These findings provide insights for applications such as solar cells and light-emitting devices based on CsPbBr3nanocrystals.

6.
Nanoscale Res Lett ; 16(1): 51, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33745078

ABSTRACT

Intramolecular exciton dissociation is critical for high efficient mobile charge carrier generations in organic solar cells. Yet despite much attention, the effects of π bridges on exciton dissociation dynamics in donor-π-acceptor (D-π-A) alternating conjugated polymers remain still unclear. Here, using a combination of femtosecond time-resolved transient absorption (TA) spectroscopy and steady-state spectroscopy, we track ultrafast intramolecular exciton relaxation dynamics in three D-π-A alternating conjugated polymers which were synthesized by Qin's group and named HSD-A, HSD-B, HSD-C. It is found that the addition of thiophene unit as π bridges will lead to the red shift of steady-state absorption spectrum. Importantly, we reveal the existence of a new intramolecular exciton dissociation pathway mediated by a bridge-specific charge transfer (CT') state with the TA fingerprint peak at 1200 nm in π-bridged HSD-B and HSD-C. This CT' state results in higher electron capture rates for HSD-B and HSD-C as compared to HSD-A. Depending on the proportion of CT' state and nongeminate recombination are important step for the understanding of high power conversion efficiencies in HSD-B than in HSD-C. We propose that this bridge-specific exciton dissociation pathway plays an important role in ultrafast intramolecular exciton dissociation of organic photovoltaic material D-π-A alternating conjugated polymers.

7.
Nanomaterials (Basel) ; 11(2)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670301

ABSTRACT

CsPbBr3 has attracted great attention due to unique optical properties. The understanding of the multiexciton process is crucial for improving the performance of the photoelectric devices based on CsPbBr3 nanocrystals. In this paper, the ultrafast dynamics of CsPbBr3 nanocrystals is investigated by using femtosecond transient absorption spectroscopy. It is found that Auger recombination lifetime increases with the decrease of the excitation intensity, while the trend is opposite for the hot-exciton cooling time. The time of the hot-carriers cooling to the band edge is increased when the excitation energy is increased from 2.82 eV (440 nm) to 3.82 eV (325 nm). The lifetime of the Auger recombination reaches the value of 126 ps with the excitation wavelength of 440 nm. The recombination lifetime of the single exciton is about 7 ns in CsPbBr3 nanocrystals determined by nanosecond time-resolved photoluminescence spectroscopy. The exciton binding energy is 44 meV for CsPbBr3 nanocrystals measured by the temperature-dependent steady-state photoluminescence spectroscopy. These findings provide a favorable insight into applications such as solar cells and light-emitting devices based on CsPbBr3 nanocrystals.

8.
Nanotechnology ; 32(18): 185701, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33482649

ABSTRACT

In the past few years, lead chalcogenide quantum dots (QDs) have attracted attention as a new system with a strong quantum confinement effect. In this paper, the hot-excitons cooling and Auger recombination of multiexcitons in PbS QDs are investigated by the femtosecond time-resolved transient absorption spectroscopy. The results show that the excitons dynamics in PbS QDs are closely related to the pump-photon energy and pump-pulse energy. Multiexcitons generate when the excess energy of the absorbed photons is larger than the bandgap energy in PbS QDs. The hot-excitons cooling lifetime increases but the Auger recombination lifetime decreases as the pump-photon energy and the pump-pulse energy increase. Besides, there is a competitive relation between multiple-excitons generation and hot-excitons cooling. The dynamics results of the formation and relaxation of multiexcitons in PbS QDs would shed light on the further understanding of the interaction between excitons and photons in the optoelectronic application based on PbS QDs.

9.
Nanotechnology ; 31(33): 335201, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32348976

ABSTRACT

The structures and electronic properties of InTe/graphene van der Waals heterostructures are systematically investigated using the first-principles calculations. The electronic properties of InTe monolayer and graphene are well preserved respectively and the bandgap energy of graphene is opened to 36.5 meV in the InTe/graphene heterostructure. An n-type Schottky contact is formed in InTe/graphene heterostructure at the equilibrium state. There is a transformation between n-type and p-type Schottky contact when the interlayer distance is smaller than 3.56 Å or the applied electric field is larger than -0.06 V Å-1. In addition, the Schottky contact converts to Ohmic contact when the applied vertical electric field is larger than 0.11 V Å-1 or smaller than -0.13 V Å-1.

10.
Nano Lett ; 19(10): 6765-6771, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31545901

ABSTRACT

Interfacial quantum states are drawing tremendous attention recently because of their importance in design of low-dimensional quantum heterostructures with desired charge, spin, or topological properties. Although most studies of the interfacial exchange interactions were mainly performed across the interface vertically, the lateral transport nowadays is still a major experimental method to probe these interactions indirectly. In this Letter, we fabricated a graphene and hydrogen passivated silicon interface to study the interfacial exchange processes. For the first time we found and confirmed a novel interfacial quantum state, which is specific to the 2D-3D interface. The vertically propagating electrons from silicon to graphene result in electron oscillation states at the 2D-3D interface. A harmonic oscillator model is used to explain this interfacial state. In addition, the interaction between this interfacial state (discrete energy spectrum) and the lateral band structure of graphene (continuous energy spectrum) results in Fano-Feshbach resonance. Our results show that the conventional description of the interfacial interaction in low-dimensional systems is valid only in considering the lateral band structure and its density-of-states and is incomplete for the ease of vertical transport. Our experimental observation and theoretical explanation provide more insightful understanding of various interfacial effects in low-dimensional materials, such as proximity effect, quantum tunneling, etc. More important, the Fano-Feshbach resonance may be used to realize all solid-state and scalable quantum interferometers.

11.
Nanotechnology ; 30(40): 405207, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31247615

ABSTRACT

Two-dimensional materials have recently been the focus of extensive research. Graphene-based vertical van der Waals heterostructures are expected to design and fabricate novel electronic and optoelectronic devices. Monolayer gallium telluride is a graphene-like nanosheet synthesized in experiment. Here, the electronic properties of GaTe/graphene heterostructures are investigated under the interlayer coupling and the applied perpendicular electric field. The results show that the electronic properties of GaTe and graphene are preserved, and the energy bandgap of graphene is opened to 13.5 meV in the GaTe/graphene heterostructure. It is found that the n-type Schottky contact is formed in the GaTe/graphene heterostructure, which can be tuned by the interlayer coupling, and the applied electric field. Moreover, a transformation from n-type to p-type Schottky contact is observed when the interlayer distance is smaller than 3.15 Å or the applied electric field is larger than 0.05 V Å-1. These properties are fundamental to the design of new Schottky nanodevices based on the GaTe/graphene heterostructure.

12.
Nanoscale Res Lett ; 14(1): 174, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31139946

ABSTRACT

The structural and electronic properties of a monolayer and bilayer blue phosphorene/graphene-like GaN van der Waals heterostructures are studied using first-principle calculations. The results show that the monolayer-blue phosphorene/graphene-like GaN heterostructure is an indirect bandgap semiconductor with intrinsic type II band alignment. More importantly, the external electric field tunes the bandgap of monolayer-blue phosphorene/graphene-like GaN and bilayer-blue phosphorene/graphene-like GaN, and the relationship between bandgap and external electric field indicates a Stark effect. The semiconductor-to-metal transition is observed in the presence of a strong electric field.

13.
Nanoscale Res Lett ; 13(1): 400, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30536206

ABSTRACT

Based on first-principle calculations, the stability, electronic structure, optical absorption, and modulated electronic properties by different interlayer distances or by external electric fields of bilayer α-GeTe are systemically investigated. Results show that van der Waals (vdW) bilayer α-GeTe has an indirect band structure with the gap value of 0.610 eV, and α-GeTe has attractively efficient light harvesting. Interestingly, along with the decrease of interlayer distances, the band gap of bilayer α-GeTe decreases linearly, due to the enhancement of interlayer vdW interaction. In addition, band gap transition is originated from the electric field-induced near free-electron gas (NFEG) under the application of positive electrical fields. However, when the negative electric fields are applied, there is no NFEG. On account of these characteristics of bilayer α-GeTe, a possible data storage device has been designed. These results indicate that bilayer α-GeTe has a potential to work in new electronic and optoelectronic devices.

14.
Materials (Basel) ; 11(10)2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30314264

ABSTRACT

In this work, undoped, N-doped, WO3-loaded undoped, and WO3-loaded with N-doped TiO2 rutile single-crystal wafers were fabricated by direct current (DC) magnetron sputtering. N-doping into TiO2 and WO3 loading onto TiO2 surface were used to increase and decrease oxygen vacancies. Various measurements were conducted to analyze the structural and magnetic properties of the samples. X-ray diffraction results showed that the N-doping and WO3 loading did not change the phase of all samples. X-ray photoelectron spectroscopy results revealed that W element loaded onto rutile single-crystal wafers existed in the form of WO3. UV-Vis spectrometer results showed that the absorption edge of WO3-loaded undoped and WO3-loaded with N-doped TiO2 rutile single-crystal wafers had red shift, resulting in a slight decrease in the corresponding band gap. Photoluminescence spectra indicated that oxygen vacancies existed in all samples due to the postannealing atmosphere, and oxygen vacancies density increased with N-doping, while decreasing with WO3 loading onto TiO2 surface. The magnetic properties of the samples were investigated, and the saturation magnetization values were in the order N-doped > WO3-loaded with N-doped > undoped > WO3-loaded undoped rutile single-crystal wafers, which was the same order as the oxygen vacancy densities of these samples. N-doping improved the saturation magnetization values, while WO3-loaded decreased the saturation magnetization values. This paper reveals that the magnetic properties of WO3-loaded with N-doped rutile single-crystal wafers originate from oxygen vacancies.

SELECTION OF CITATIONS
SEARCH DETAIL
...