Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(29): e2311058, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38351656

ABSTRACT

The design of smart stimuli-responsive photoluminescent materials capable of multi-level encryption and complex information storage is highly sought after in the current information era. Here, a novel adamantyl-capped CsPbBr3 (AD-CsPbBr3) perovskite NCs, along with its supramolecular host-guest assembly partner a modified ß-CD (mCD), mCD@AD-CsPbBr3, are designed and prepared. By dispersing these two materials in different solvents, namely, AD-CsPbBr3 in toluene, mCD@AD-CsPbBr3 in toluene, and mCD@AD-CsPbBr3 in methanol, the three solutions exhibit diverse photoluminescence (PL) turn-on/off or PL discoloration response upon supramolecular stimulus. Based on these responses, a proof-of-principle programmable Multi-Level Photoluminescence Encoding System (MPLES) is established. Three types of four-level and three types of three-level information encoding are achieved by the system. A layer-by-layer four-level information encryption and decryption as well as a two-level encrypted 3D code are successfully achieved.

2.
Adv Mater ; 35(45): e2307971, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37743568

ABSTRACT

A novel smart fluorescent polymer polyethyleneimine-grafted pyrene (PGP) is developed by incorporating four stimuli-triggers at molecular level. The triggers are amphiphilicity, supramolecular host-guest sites, pyrene fluorescence indicator, and reversible chelation sites. PGP exhibits smart deformation and shape-dependent fluorescence in response to external stimuli. It can deform into three typical shapes with a characteristic fluorescence color, namely, spherical core-shell micelles of cyan-green fluorescence, standard rectangular nanosheets of yellow fluorescence, and irregular branches of deep-blue fluorescence. A quasi-reversible deformation between the first two shapes can be dynamically manipulated. Moreover, driven by reversible coordination and the resulting intramolecular photoinduced electron transfer, PGP can be used as an aqueous fluorescence ink with erasable and recoverable properties. The fluorescent patterns printed by PGP ink on paper can be rapidly erased and recovered by simple spraying a sequence of Cu2+ and ethylene diamine tetraacetic acid aqueous solutions. This erase/recover transformation can be repeated multiple times on the same paper. The multiple stimulus responsiveness of PGP makes it have potential applications in nanorobots, sensing, information encryption, and anticounterfeiting.

SELECTION OF CITATIONS
SEARCH DETAIL
...