Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 15(5): 321, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719812

ABSTRACT

RAD18, an important ubiquitin E3 ligase, plays a dual role in translesion DNA synthesis (TLS) and homologous recombination (HR) repair. However, whether and how the regulatory mechanism of O-linked N-acetylglucosamine (O-GlcNAc) modification governing RAD18 and its function during these processes remains unknown. Here, we report that human RAD18, can undergo O-GlcNAcylation at Ser130/Ser164/Thr468, which is important for optimal RAD18 accumulation at DNA damage sites. Mechanistically, abrogation of RAD18 O-GlcNAcylation limits CDC7-dependent RAD18 Ser434 phosphorylation, which in turn significantly reduces damage-induced PCNA monoubiquitination, impairs Polη focus formation and enhances UV sensitivity. Moreover, the ubiquitin and RAD51C binding ability of RAD18 at DNA double-strand breaks (DSBs) is O-GlcNAcylation-dependent. O-GlcNAcylated RAD18 promotes the binding of RAD51 to damaged DNA during HR and decreases CPT hypersensitivity. Our findings demonstrate a novel role of RAD18 O-GlcNAcylation in TLS and HR regulation, establishing a new rationale to improve chemotherapeutic treatment.


Subject(s)
Acetylglucosamine , DNA-Binding Proteins , Proliferating Cell Nuclear Antigen , Rad51 Recombinase , Recombinational DNA Repair , Ubiquitin-Protein Ligases , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Acetylglucosamine/metabolism , Rad51 Recombinase/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Phosphorylation , DNA Replication , Ubiquitination , DNA Breaks, Double-Stranded , DNA-Directed DNA Polymerase/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA Damage , DNA/metabolism , HEK293 Cells , Ultraviolet Rays , Protein Binding , Glycosylation , Translesion DNA Synthesis
2.
Oncogene ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632437

ABSTRACT

Pyruvate kinase M2 (PKM2) is a central metabolic enzyme driving the Warburg effect in tumor growth. Previous investigations have demonstrated that PKM2 is subject to O-linked ß-N-acetylglucosamine (O-GlcNAc) modification, which is a nutrient-sensitive post-translational modification. Here we found that unc-51 like autophagy activating kinase 1 (ULK1), a glucose-sensitive kinase, interacts with PKM2 and phosphorylates PKM2 at Ser333. Ser333 phosphorylation antagonizes PKM2 O-GlcNAcylation, promotes its tetramer formation and enzymatic activity, and decreases its nuclear localization. As PKM2 is known to have a nuclear role in regulating c-Myc, we also show that PKM2-S333 phosphorylation inhibits c-Myc expression. By downregulating glucose consumption and lactate production, PKM2 pS333 attenuates the Warburg effect. Through mouse xenograft assays, we demonstrate that the phospho-deficient PKM2-S333A mutant promotes tumor growth in vivo. In conclusion, we identified a ULK1-PKM2-c-Myc axis in inhibiting breast cancer, and a glucose-sensitive phosphorylation of PKM2 in modulating the Warburg effect.

3.
Plant Biotechnol J ; 22(2): 413-426, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37816143

ABSTRACT

Chilling injury has a negative impact on the quantity and quality of crops, especially subtropical and tropical plants. The plant cell wall is not only the main source of biomass production, but also the first barrier to various stresses. Therefore, improving the understanding of the alterations in cell wall architecture is of great significance for both biomass production and stress adaptation. Herein, we demonstrated that the cell wall principal component cellulose accumulated during chilling stress, which was caused by the activation of MaCESA proteins. The sequence-multiple comparisons show that a cold-inducible NAC transcriptional factor MaNAC1, a homologue of Secondary Wall NAC transcription factors, has high sequence similarity with Arabidopsis SND3. An increase in cell wall thickness and cellulosic glucan content was observed in MaNAC1-overexpressing Arabidopsis lines, indicating that MaNAC1 participates in cellulose biosynthesis. Over-expression of MaNAC1 in Arabidopsis mutant snd3 restored the defective secondary growth of thinner cell walls and increased cellulosic glucan content. Furthermore, the activation of MaCESA7 and MaCESA6B cellulose biosynthesis genes can be directly induced by MaNAC1 through binding to SNBE motifs within their promoters, leading to enhanced cellulose content during low-temperature stress. Ultimately, tomato fruit showed greater cold resistance in MaNAC1 overexpression lines with thickened cell walls and increased cellulosic glucan content. Our findings revealed that MaNAC1 performs a vital role as a positive modulator in modulating cell wall cellulose metabolism within banana fruit under chilling stress.


Subject(s)
Arabidopsis , Musa , Cellulose/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Musa/genetics , Musa/metabolism , Fruit/genetics , Fruit/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant/genetics
4.
Biomed Pharmacother ; 168: 115810, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913736

ABSTRACT

BACKGROUND: Several studies have reported the association between osteoporosis and major depressive disorder (MDD) as well as the use of antidepressants. However, it remains to be elucidated whether these associations are related to exposure to antidepressants, a consequence of a disease process, or a combination of both. METHODS: This study investigates the independent effect of the antidepressant duloxetine hydrochloride (DH) on ovariectomy-induced bone loss in mice. One week after ovariectomy, the treated mice received DH. To explore the mechanism underlying the rescue of bone loss, bone marrow cells were isolated from mouse femurs and tibias, and macrophages extracted from them were induced to become osteoclasts in vitro while being treated with DH. Subsequently, the osteoclasts underwent Bulk RNA-Seq to reveal the involved signaling pathways. The results of the bioinformatic analysis were then validated through in vitro experiments. RESULTS: The in vivo experiments demonstrated that DH treatment compromised ovariectomy-induced bone loss after 7 weeks. The in vitro experiments suggested that DH treatment attenuated osteoclast differentiation via the MAPKs/NFATc1 signaling pathway. CONCLUSION: The findings from this study suggest that DH, instead of causing bone mass loss, may assist in alleviating postmenopausal osteoporosis. These results can serve as a reference for the clinical treatment of patients with perimenopausal or postmenopausal depression using antidepressants.


Subject(s)
Depressive Disorder, Major , Osteoclasts , Humans , Female , Animals , Mice , Duloxetine Hydrochloride/pharmacology , Duloxetine Hydrochloride/therapeutic use , Depressive Disorder, Major/metabolism , Cell Differentiation , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Ovariectomy/adverse effects , Osteogenesis , RANK Ligand/metabolism
5.
In Vitro Cell Dev Biol Anim ; 59(6): 420-430, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37460875

ABSTRACT

Brevilin A (BA) is the primary component of Centipeda minima, which is widely used in Chinese traditional medicine. The anti-inflammatory and anti-tumor properties of BA have been established; however, its function in bone metabolism is not well understood. This study revealed that concentrations of BA below 1.0 µM did not inhibit the proliferation of bone marrow macrophages but did impede the differentiation and bone resorption activity of osteoclasts. Furthermore, BA suppressed the expression of osteoclast-specific genes Mmp9, Acp5, Dc-stamp, Ctsk, and Atp6v0d2. In addition, mTOR, ERK, and NFATc1 activation in bone marrow macrophages were suppressed by BA. As a whole, BA blocks the mTOR and ERK signaling pathways, which is responsible for the development and activity of osteoclasts, and the resorption of bone.


Subject(s)
Bone Resorption , Osteoclasts , Animals , Osteoclasts/metabolism , Bone Resorption/genetics , Bone Resorption/pathology , TOR Serine-Threonine Kinases/metabolism , RANK Ligand/pharmacology , RANK Ligand/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Cell Differentiation/genetics , Osteogenesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...