Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Opt Lett ; 49(10): 2793-2796, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748163

ABSTRACT

This work demonstrates a high-performance photodetector with a 4-cycle Ge0.86Si0.14/Ge multi-quantum well (MQW) structure grown by reduced pressure chemical vapor deposition techniques on a Ge-buffered Si (100) substrate. At -1 V bias, the dark current density of the fabricated PIN mesa devices is as low as 3 mA/cm2, and the optical responsivities are 0.51 and 0.17 A/W at 1310 and 1550 nm, respectively, corresponding to the cutoff wavelength of 1620 nm. At the same time, the device has good high-power performance and continuous repeatable light response. On the other hand, the temperature coefficient of resistance (TCR) of the device is as high as -5.18%/K, surpassing all commercial thermal detectors. These results indicate that the CMOS-compatible and low-cost Ge0.86Si0.14/Ge multilayer structure is promising for short-wave infrared and uncooled infrared imaging.

2.
Front Immunol ; 15: 1384633, 2024.
Article in English | MEDLINE | ID: mdl-38799454

ABSTRACT

Background: Acute myeloid leukemia (AML) is a highly aggressive and pathogenic hematologic malignancy with consistently high mortality. Lysosomes are organelles involved in cell growth and metabolism that fuse to form specialized Auer rods in AML, and their role in AML has not been elucidated. This study aimed to identify AML subtypes centered on lysosome-related genes and to construct a prognostic model to guide individualized treatment of AML. Methods: Gene expression data and clinical data from AML patients were downloaded from two high-throughput sequencing platforms. The 191 lysosomal signature genes were obtained from the database MsigDB. Lysosomal clusters were identified by unsupervised consensus clustering. The differences in molecular expression, biological processes, and the immune microenvironment among lysosomal clusters were subsequently analyzed. Based on the molecular expression differences between lysosomal clusters, lysosomal-related genes affecting AML prognosis were screened by univariate cox regression and multivariate cox regression analyses. Algorithms for LASSO regression analyses were employed to construct prognostic models. The risk factor distribution, KM survival curve, was applied to evaluate the survival distribution of the model. Time-dependent ROC curves, nomograms and calibration curves were used to evaluate the predictive performance of the prognostic models. TIDE scores and drug sensitivity analyses were used to explore the implication of the model for AML treatment. Results: Our study identified two lysosomal clusters, cluster1 has longer survival time and stronger immune infiltration compared to cluster2. The differences in biological processes between the two lysosomal clusters are mainly manifested in the lysosomes, vesicles, immune cell function, and apoptosis. The prognostic model consisting of six prognosis-related genes was constructed. The prognostic model showed good predictive performance in all three data sets. Patients in the low-risk group survived significantly longer than those in the high-risk group and had higher immune infiltration and stronger response to immunotherapy. Patients in the high-risk group showed greater sensitivity to cytarabine, imatinib, and bortezomib, but lower sensitivity to ATRA compared to low -risk patients. Conclusion: Our prognostic model based on lysosome-related genes can effectively predict the prognosis of AML patients and provide reference evidence for individualized immunotherapy and pharmacological chemotherapy for AML.


Subject(s)
Immunotherapy , Leukemia, Myeloid, Acute , Lysosomes , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/diagnosis , Lysosomes/metabolism , Prognosis , Female , Male , Immunotherapy/methods , Biomarkers, Tumor/genetics , Middle Aged , Gene Expression Profiling , Adult , Nomograms , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Aged , Gene Expression Regulation, Leukemic , Transcriptome
3.
Plants (Basel) ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38794411

ABSTRACT

It is well known that application of exogenous trehalose can enhance the heat resistance of plants. To investigate the underlying molecular mechanisms by which exogenous trehalose induces heat resistance in C. sinensis, a combination of physiological and transcriptome analyses was conducted. The findings revealed a significant increase in the activity of superoxide dismutase (SOD) and peroxidase (POD) upon treatment with 5.0 mM trehalose at different time points. Moreover, the contents of proline (PRO), endogenous trehalose, and soluble sugar exhibited a significant increase, while malondialdehyde (MDA) content decreased following treatment with 5.0 mM trehalose under 24 h high-temperature stress (38 °C/29 °C, 12 h/12 h). RNA-seq analysis demonstrated that the differentially expressed genes (DEGs) were significantly enriched in the MAPK pathway, plant hormone signal transduction, phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, flavonoid biosynthesis, and the galactose metabolism pathway. The capability to scavenge free radicals was enhanced, and the expression of a heat shock factor gene (HSFB2B) and two heat shock protein genes (HSP18.1 and HSP26.5) were upregulated in the tea plant. Consequently, it was concluded that exogenous trehalose contributes to alleviating heat stress in C. sinensis. Furthermore, it regulates the expression of genes involved in diverse pathways crucial for C. sinensis under heat-stress conditions. These findings provide novel insights into the molecular mechanisms underlying the alleviation of heat stress in C. sinensis with trehalose.

4.
Adv Sci (Weinh) ; : e2400752, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38774949

ABSTRACT

Organic-hybrid particle-based materials are increasingly important in (opto)electronics, sensing, and catalysis due to their printability and stretchability as well as their potential for unique synergistic functional effects. However, these functional properties are often limited due to poor electronic coupling between the organic shell and the nanoparticle. N-heterocyclic carbenes (NHCs) belong to the most promising anchors to achieve electronic delocalization across the interface, as they form robust and highly conductive bonds with metals and offer a plethora of functionalization possibilities. Despite the outstanding potential of the conductive NHC-metal bond, synthetic challenges have so far limited its application to the improvement of colloidal stabilities, disregarding the potential of the conductive anchor. Here, NHC anchors are used to modify redox-active gold nanoparticles (AuNPs) with conjugated triphenylamines (TPA). The resulting AuNPs exhibit excellent thermal and redox stability benefiting from the robust NHC-gold bond. As electrochromic materials, the hybrid materials show pronounced color changes from red to dark green, a highly stable cycling stability (1000 cycles), and a fast response speed (5.6 s/2.1 s). Furthermore, TPA-NHC@AuNP exhibits an ionization potential of 5.3 eV and a distinct out-of-plane conductivity, making them a promising candidate for application as hole transport layers in optoelectronic devices.

5.
Nanomaterials (Basel) ; 14(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786792

ABSTRACT

After more than five decades, Moore's Law for transistors is approaching the end of the international technology roadmap of semiconductors (ITRS). The fate of complementary metal oxide semiconductor (CMOS) architecture has become increasingly unknown. In this era, 3D transistors in the form of gate-all-around (GAA) transistors are being considered as an excellent solution to scaling down beyond the 5 nm technology node, which solves the difficulties of carrier transport in the channel region which are mainly rooted in short channel effects (SCEs). In parallel to Moore, during the last two decades, transistors with a fully depleted SOI (FDSOI) design have also been processed for low-power electronics. Among all the possible designs, there are also tunneling field-effect transistors (TFETs), which offer very low power consumption and decent electrical characteristics. This review article presents new transistor designs, along with the integration of electronics and photonics, simulation methods, and continuation of CMOS process technology to the 5 nm technology node and beyond. The content highlights the innovative methods, challenges, and difficulties in device processing and design, as well as how to apply suitable metrology techniques as a tool to find out the imperfections and lattice distortions, strain status, and composition in the device structures.

6.
Med Oncol ; 41(7): 166, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819709

ABSTRACT

The full-length p200CUX1 protein encoded by the homology frame CUT-like protein (CUX1) plays an important role in tumors as a pro-oncogene or oncogene. However, its role and mechanism in acute myeloid leukemia remain unknown. p200CUX1 regulates several pathways, including the MAPK signaling pathway. Our data showed that p200CUX1 is lowly expressed in THP1 and U937 AML cell lines. Lentiviral overexpression of p200CUX1 reduced proliferation and promoted apoptosis and G0/G1 phase blockade, correlating with MAPK pathway suppression. Additionally, p200CUX1 regulated the expression of bone morphogenetic protein 8B (BMP8B), which is overexpressed in AML. Overexpression of p200CUX1 downregulated BMP8B expression and inhibited the MAPK pathway. Furthermore, BMP8B knockdown inhibited AML cell proliferation, enhanced apoptosis and the sensitivity of ATRA-induced cell differentiation, and blocked G0/G1 transition. Our findings demonstrate the pivotal function of the p200CUX1-BMP8B-MAPK axis in maintaining the viability of AML cells. Consequently, targeting p200CUX1 could represent a viable strategy in AML therapy.


Subject(s)
Apoptosis , Cell Proliferation , Leukemia, Myeloid, Acute , MAP Kinase Signaling System , Humans , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/genetics , MAP Kinase Signaling System/physiology , Cell Line, Tumor , Repressor Proteins/genetics , Repressor Proteins/metabolism , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Disease Progression
7.
Breast ; 75: 103733, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615482

ABSTRACT

INTRODUCTION: The impact of distinct estrogen receptor (ER) and progesterone receptor (PR) expression patterns on tumor behavior and treatment outcomes within HER2-positive breast cancer is not fully explored. This study aimed to comprehensively examine the clinical differences among patients with HER2-positive breast cancer harboring distinct ER and PR expression patterns in the neoadjuvant setting. METHODS: This retrospective analysis included 871 HER2-positive breast patients treated with neoadjuvant therapy at our hospital between 2011 and 2022. Comparisons were performed across the three hormone receptor (HR)-specific subtypes, namely the ER-negative/PR-negative/HER2-positive (ER-/PR-/HER2+), the single HR-positive (HR+)/HER2+, and the triple-positive breast cancer (TPBC) subtypes. RESULTS: Of 871 patients, 21.0% had ER-/PR-/HER2+ tumors, 33.6% had single HR+/HER2+ disease, and 45.4% had TPBC. Individuals with single HR+/HER2+ tumors and TPBC cases demonstrated significantly lower pathological complete response (pCR) rates compared to those with ER-/PR-/HER2+ tumors (36.9% vs. 24.3% vs. 49.2%, p < 0.001). Multivariate analysis confirmed TPBC as significantly associated with decreased pCR likelihood (OR = 0.42, 95%CI 0.28-0.63, p < 0.001). Survival outcomes, including disease-free survival (DFS) and overall survival (OS), showed no significant differences across HR-specific subtypes in the overall patient population. However, within patients without anti-HER2 therapy, TPBC was linked to improved DFS and a trend towards better OS. CONCLUSIONS: HER2-positive breast cancer exhibited three distinct HR-specific subtypes with varying clinical manifestations and treatment responses. These findings suggest personalized treatment strategies considering ER and PR expression patterns, emphasizing the need for further investigations to unravel molecular traits underlying HER2-positive breast cancer with distinct HR expression patterns.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Receptor, ErbB-2 , Receptors, Estrogen , Receptors, Progesterone , Humans , Female , Receptor, ErbB-2/metabolism , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Receptors, Progesterone/metabolism , Receptors, Estrogen/metabolism , Middle Aged , Retrospective Studies , Adult , Aged , Treatment Outcome , Disease-Free Survival , Biomarkers, Tumor/metabolism
8.
Cancer Cell Int ; 24(1): 116, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539153

ABSTRACT

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) have been acknowledged as the most important stromal cells in the bone marrow (BM) microenvironment for physiologic hematopoiesis and the concomitant hematologic malignancies. However, the systematic and detailed dissection of the biological and transcriptomic signatures of BM-MSCs in multiple myeloma (MM) are largely unknown. METHODS: In this study, we isolated and identified BM-MSCs from 10 primary MM patients and 10 healthy donors (HD). On the one hand, we compared the multifaceted biological characteristics of the indicated two BM-MSCs, including biomarker expression pattern, multilineage differentiation potential, stemness and karyotyping, together with the cellular vitality and immunosuppressive property. On the other hand, we took advantage of RNA-SEQ and bioinformatics analysis to verify the similarities and differences at the transcriptomic level between MM-MSCs and HD-MSCs. RESULTS: As to biological phenotypes and biofunctions, MM-MSCs revealed conservation in immunophenotype, stemness and differentiation towards adipocytes and chondrocytes with HD-MSCs, whereas with impaired osteogenic differentiation potential, cellular vitality and immunosuppressive property. As to transcriptomic properties, MM-MSCs revealed multidimensional alterations in gene expression profiling and genetic variations. CONCLUSIONS: Overall, our date systematic and detailed reflected the multifaceted similarities and variations between MM-MSCs and HD-MSCs both at the cellular and molecular levels, and in particular, the alterations of immunomodulation and cellular viability of MM-MSCs, which wound benefit the further exploration of the pathogenesis and new drug application (NDA) of multiple myeloma from the view of BM-MSCs.

9.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542289

ABSTRACT

Tripartite motif-containing protein 21 (TRIM21) is involved in signal transduction and antiviral responses through the ubiquitination of protein targets. TRIM21 was reported to be related to the imbalance of host cell homeostasis caused by viral infection. Our studies indicated that H5N1 highly pathogenic avian influenza virus (HPAIV) infection up-regulated TRIM21 expression in A549 cells. Western blot and qPCR results showed that knockdown of TRIM21 alleviated oxidative stress and ferroptosis induced by H5N1 HPAIV and promoted the activation of antioxidant pathways. Co-IP results showed that TRIM21 promoted oxidative stress and ferroptosis by regulating the SQSTM1-NRF2-KEAP1 axis by increasing SQSTM1 K63-linked polyubiquitination under the condition of HPAIV infection. In addition, TRIM21 attenuated the inhibitory effect of antioxidant NAC on HPAIV titers and enhanced the promoting effect of ferroptosis agonist Erastin on HPAIV titers. Our findings provide new insight into the role of TRIM21 in oxidative stress and ferroptosis induced by viral infection.


Subject(s)
Ferroptosis , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Animals , Humans , Antioxidants/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism
10.
Int Immunopharmacol ; 130: 111765, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38447414

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) displayed poor response to programmed death-1 (PD-1) blockade therapy. Regulatory T cells (Tregs) was one of major immunosuppressive components in Tumor microenvironment and plays a vital role in the resistance of immunotherapy. Coinhibitory receptors regulate function of regulatory Tregs and are associated with resistance of PD-1 blockade. However, the coinhibitory receptors expression and differentiated status of Tregs in AML patients remain to be unclear. METHODS: Phenotypic determination of Tregs and CD8+ T cells in bone marrow of healthy donors and AML patients was performed by flow cytometry. Coculture experiments of AML and Tregs in vitro were performed and the concentrations of lactate acid (LA) in the supernatant were examined by ELISA. RESULTS: More Tregs differentiated into effector subsets in AML patients. However, PD-1 and T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) expression on Tregs were comparable in healthy donors and AML patients. Further analysis showed that PD-1+ and PD-1+TIGIT+Tregs are more abundant in the bone marrow of patients with higher leukemic load. Moreover, PD-1+ Tregs accumulation was associated with higher level of senescent CD4+ T cells and increased frequencies of exhausted CD4+ as well as CD8+ T cells. Notably, neither Tregs nor their effector subsets were decreased among patients in complete remission. PD-1 expression was significantly downregulated in Tregs after achieving complete remission. Mechanistically, both AML cell line (KG-1α) and primary AML blasts produced high concentration of LA. Blockade of LA by lactate transporter inhibitor abrogated the upregulation of PD-1 by AML cells. CONCLUSION: PD-1+ Tregs accumulation in bone marrow in higher leukemic burden setting was linked to lactate acid secreted by AML blasts and decreased after disease remission. Our findings provided a novel insight into Tregs in AML and possible mechanism for resistance of PD-1 blockade in AML.


Subject(s)
Bone Marrow , Leukemia, Myeloid, Acute , Humans , Bone Marrow/pathology , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes/metabolism , Lactic Acid , Tumor Burden , Leukemia, Myeloid, Acute/metabolism , Tumor Microenvironment
11.
Plants (Basel) ; 13(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38475465

ABSTRACT

Rubus chingii Hu is the only species that is used for both edible and medicinal purposes among the 194 species of the genus Rubus in China. It is well known for its sweet and sour fresh fruits that are rich in vitamins and for its dried immature fruits that are used to treat kidney-related ailments. This study aims to evaluate genetic diversity and population structure and build a core germplasm repository of 132 R. chingii accessions from the provinces of Jiangxi and Fujian, using Hyper-seq-derived single-nucleotide polymorphism (SNP) markers. This is the first genetic study of R. chingii based on SNP molecular markers, and a total of 1,303,850 SNPs and 433,159 insertions/deletions (InDels) were identified. Low values for observed heterozygosity, nucleotide diversity (Pi) and fixation indexes (Fis) indicated low genetic diversity within populations, and an analysis of molecular variance (AMOVA) showed that 37.4% and 62.6% of the variations were found between populations and within samples, respectively. Four main clusters were identified by means of neighbor-joining (NJ) trees, the ADMIXTURE program and principal component analysis (PCA). Based on the genetic diversity, we finally constructed 38 representative core collections, representing 50% of the total core germplasm samples and 95.3% of the genotypes. In summary, the results of our study can provide valuable information on the genetic structure of R. chingii germplasm resources, which is helpful for further explorations of potential high-quality genes and for formulating future breeding and conservation strategies.

12.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474290

ABSTRACT

Commercial papaya varieties grown in Australia vary greatly in taste and aroma. Previous profiling has identified undesirable 'off tastes' in existing varieties, discouraging a portion of the population from consuming papayas. Our focus on enhancing preferred flavours led to an exploration of the genetic mechanisms and biosynthesis pathways that underlie these desired taste profiles. To identify genes associated with consumer-preferred flavours, we conducted whole RNA sequencing and de novo genome assembly on papaya varieties RB1 (known for its sweet flavour and floral aroma) and 1B (less favoured due to its bitter taste and musty aroma) at both ripe and unripe stages. In total, 180,368 transcripts were generated, and 118 transcripts related to flavours were differentially expressed between the two varieties at the ripe stage. Five genes (cpBGH3B, cpPFP, cpSUS, cpGES and cpLIS) were validated through qPCR and significantly differentially expressed. These genes are suggested to play key roles in sucrose metabolism and aromatic compound production pathways, holding promise for future selective breeding strategies. Further exploration will involve assessing their potential across broader germplasm and various growth environments.


Subject(s)
Carica , Taste , Carica/genetics , Australia , Taste Perception , Flavoring Agents
13.
Neuroreport ; 35(6): 352-360, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38526937

ABSTRACT

An imbalance of immune/inflammatory reactions aggravates secondary brain injury after traumatic brain injury (TBI) and can deteriorate clinical prognosis. So far, not enough therapeutic avenues have been found to prevent such an imbalance in the clinical setting. Progesterone has been shown to regulate immune/inflammatory reactions in many diseases and conveys a potential protective role in TBI. This study was designed to investigate the neuroprotective effects of progesterone associated with immune/inflammatory modulation in experimental TBI. A TBI model in adult male C57BL/6J mice was created using a controlled contusion instrument. After injury, the mice received consecutive progesterone therapy (8 mg/kg per day, i.p.) until euthanized. Neurological deficits were assessed via Morris water maze test. Brain edema was measured via the dry-wet weight method. Immunohistochemical staining and flow cytometry were used to examine the numbers of immune/inflammatory cells, including IBA-1 + microglia, myeloperoxidase + neutrophils, and regulatory T cells (Tregs). ELISA was used to detect the concentrations of IL-1ß, TNF-α, IL-10, and TGF-ß. Our data showed that progesterone therapy significantly improved neurological deficits and brain edema in experimental TBI, remarkably increased regulatory T cell numbers in the spleen, and dramatically reduced the activation and infiltration of inflammatory cells (microglia and neutrophils) in injured brain tissue. In addition, progesterone therapy decreased the expression of the pro-inflammatory cytokines IL-1ß and TNF-α but increased the expression of the anti-inflammatory cytokine IL-10 after TBI. These findings suggest that progesterone administration could be used to regulate immune/inflammatory reactions and improve outcomes in TBI.


Subject(s)
Brain Edema , Brain Injuries, Traumatic , Mice , Male , Animals , Interleukin-10 , Progesterone/pharmacology , Neuroprotection , Tumor Necrosis Factor-alpha/metabolism , Brain Edema/drug therapy , Brain Edema/etiology , Brain Edema/prevention & control , Mice, Inbred C57BL , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-1beta/metabolism , Disease Models, Animal , Microglia/metabolism
14.
iScience ; 27(3): 109204, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38420591

ABSTRACT

Pathogenic mycobacteria orchestrate the complex cell populations known as granuloma that is the hallmark of tuberculosis. Foam cells, a lipid-rich cell-type, are considered critical for granuloma formation; however, the causative factor in foam cell formation remains unclear. Atherosclerosis is a chronic inflammatory disease characterized by the abundant accumulation of lipid-laden-macrophage-derived foam cells during which cholesterol 25-hydroxylase (CH25H) is crucial in foam cell formation. Here, we show that M. marinum (Mm), a relative of M. tuberculosis, induces foam cell formation, leading to granuloma development following CH25H upregulation. Moreover, the Mm-driven increase in CH25H expression is associated with the presence of phthiocerol dimycocerosate, a determinant for Mm virulence and integrity. CH25H-null mice showed decreased foam cell formation and attenuated pathology. Atorvastatin, a recommended first-line lipid-lowering drug, promoted the elimination of M. marinum and concomitantly reduced CH25H production. These results define a previously unknown role for CH25H in controlling macrophage-derived foam cell formation and Tuberculosis pathology.

15.
Drugs R D ; 24(1): 81-87, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38345697

ABSTRACT

BACKGROUND: Potassium bismuth citrate is a gastric mucosal protector and a key drug for treating peptic ulcers. OBJECTIVE: To evaluate the pharmacokinetic characteristics and safety of 120-mg bismuth potassium citrate formulations administered orally under fasting conditions in healthy Chinese subjects. METHOD: A single-center open two-cycle trial was conducted on 12 healthy subjects who received a single oral dose of 120 mg of bismuth potassium citrate. The plasma concentration of bismuth was determined using a validated inductively coupled plasma mass spectrometry (ICP‒MS) method. The pharmacokinetic parameters, including maximum serum concentration (Cmax) and area under the curve concentration-time curve (AUC0-t and AUC0-∞), and safety were evaluated via noncompartment analysis. RESULTS: The ratios of the least square geometric mean ratio between the test (T) and reference (R) formulations for Cmax, AUC0-t, and AUC0-∞ were 44.8%, 55.5%, and 64.4%, respectively; the bilateral 95% confidence intervals (Cis) for these parameters were 20.2-99.6%, 24.1-127.5%, and 23.7-175.0%, respectively, and the non-inferior limits for these parameters were 169.4%, 198.8%, and 200.5%, respectively. The upper limits of the one-sided 97.5% confidence interval for the least squares geometric mean ratio (T/R) were lower than the non-inferior limits. No serious adverse reactions or adverse reactions leading to detachment were observed among the subjects. CONCLUSION: The concentration of bismuth in the blood of healthy subjects in the T formulation was not greater than that in the R formulation. Similarly, the safety of oral administration of 120 mg of bismuth potassium citrate formulations to healthy subjects was good. The trial registration number (TRN) was [2018] 013, 6 December 2018.

16.
Biomater Sci ; 12(2): 288-307, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38189655

ABSTRACT

Ferroptosis, first suggested in 2012, is a type of non-apoptotic programmed cell death caused by the buildup of lipid peroxidation and marked by an overabundance of oxidized poly unsaturated fatty acids. During the last decade, researchers have uncovered the formation of ferroptosis and created multiple drugs aimed at it, but due to poor selectivity and pharmacokinetics, clinical application has been hindered. In recent years, biomedical discoveries and developments in nanotechnology have spurred the investigation of ferroptosis nanomaterials, providing new opportunities for the ferroptosis driven tumours treatment. Additionally, hydrogels have been widely studied in ferroptosis because of their unique 3D structure and excellent controllability. By using these biomaterials, it is possible to achieve controlled release and targeted delivery of drugs, thus increasing the potency of the drugs and minimizing adverse effects. Therefore, summarizing the biomedical nanomaterials, including hydrogels, used in ferroptosis for cancer therapy is a must. This article provides an overview of ferroptosis, detailing its properties and underlying mechanisms. It also categorizes and reviews the use of various nanomaterials in ferroptosis, along with relevant explanations and illustrations. In addition, we discuss the opportunities and challenges facing the application of nanomaterials in ferroptosis. Finally, the development prospects of this field are prospected. This review is intended to provide a foundation for the development and application of biomedical nanomaterials in ferroptosis.


Subject(s)
Ferroptosis , Nanostructures , Neoplasms , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Hydrogels , Nanotechnology , Neoplasms/drug therapy
17.
Reprod Biol Endocrinol ; 22(1): 13, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238814

ABSTRACT

BACKGROUND: Increasing number of studies have demonstrated certain patterns of microbial changes in gynecological diseases; however, the interaction between them remains unclear. To evaluate the consistency or specificity across multiple studies on different gynecological diseases and microbial alterations at different sites of the body (gut and genital tract), we conducted a systematic review and meta-analysis. METHODS: We searched PubMed, Embase, Web of Science, and Cochrane Library up to December 5, 2022(PROSPERO: CRD42023400205). Eligible studies focused on gynecological diseases in adult women, applied next-generation sequencing on microbiome, and reported outcomes including alpha or beta diversity or relative abundance. The random-effects model on standardized mean difference (SMD) was conducted using the inverse-variance method for alpha diversity indices. RESULTS: Of 3327 unique articles, 87 eligible studies were included. Significant decreases were found in gut microbiome of patients versus controls (observed species SMD=-0.35; 95%CI, -0.62 to -0.09; Shannon index SMD=-0.23; 95%CI, -0.40 to -0.06), whereas significant increases were observed in vaginal microbiome (Chao1 SMD = 1.15; 95%CI, 0.74 to 1.56; Shannon index SMD = 0.51; 95%CI, 0.16 to 0.86). Most studies of different diagnostic categories showed no significant differences in beta diversity. Disease specificity was observed, but almost all the changes were only replicated in three studies, except for the increased Aerococcus in bacterial vaginosis (BV). Patients with major gynecological diseases shared the enrichment of Prevotella and depletion of Lactobacillus, and an overlap in microbes was implied between BV, cervical intraepithelial neoplasia, and cervical cancer. CONCLUSIONS: These findings demonstrated an association between alterations in gut and genital microbiota and gynecological diseases. The most observed results were shared alterations across diseases rather than disease-specific alterations. Therefore, further investigation is required to identify specific biomarkers for diagnosis and treatment in the future.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Uterine Cervical Neoplasms , Vaginosis, Bacterial , Adult , Humans , Female , Microbiota/genetics , Vaginosis, Bacterial/diagnosis , Vaginosis, Bacterial/microbiology , Vagina
18.
Mayo Clin Proc ; 99(1): 90-101, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37690012

ABSTRACT

OBJECTIVE: To assess whether the presence of cardiac autonomic dysfunction denoted by low heart rate variability (HRV) modifies the effect of intensive glycemic therapy on outcomes in patients with type 2 diabetes. PATIENTS AND METHODS: This study included 7946 participants in the ACCORD (Action to Control Cardiovascular Risk in Diabetes) trial from January 2001 through June 2009. Heart rate variability measures included standard deviation of all normal-to-normal intervals (SDNN) and root mean square of successive differences between normal-to-normal intervals (rMSSD). Abnormal values were defined based on less than the 10th percentile for SDNN and rMSSD. RESULTS: Compared with standard therapy, intensive therapy was associated with improved primary outcome (composite of cardiovascular events) in the low-HRV group (SDNN: HR, 0.57; 95% CI, 0.39 to 0.84; rMSSD: HR, 0.57; 95% CI, 0.38 to 0.84), but not in the normal-HRV group (SDNN: HR, 0.90; 95% CI, 0.77 to 1.05; rMSSD: HR, 0.90; 95% CI, 0.77 to 1.05). A similar pattern was found for coronary heart disease. Conversely, intensive therapy had a neutral effect on all cause death in the low-HRV group (SDNN: HR, 0.88; 95% CI, 0.54 to 1.41; rMSSD: HR, 0.71; 95% CI, 0.43 to 1.17;), but increase risk of all-cause death in the normal-HRV group (SDNN: HR, 1.21; 95% CI, 1.00 to 1.46; rMSSD: HR, 1.25; 95% CI, 1.03 to 1.51). Intensive therapy induced a greater risk of hypoglycemia in the normal-HRV group than that in the low-HRV group. CONCLUSION: Cardiac autonomic dysfunction expressed as low HRV identified subpopulations in ACCORD with more benefits and less harms from intensive therapy.


Subject(s)
Autonomic Nervous System Diseases , Diabetes Mellitus, Type 2 , Humans , Autonomic Nervous System , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Heart , Heart Rate/physiology
19.
Diabetes Metab Syndr ; 18(1): 102930, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38150792

ABSTRACT

AIMS: Heart rate variability (HRV) and resting heart rate (RHR) are usually analyzed and interpreted separately. We aimed to assess the interplay of HRV and RHR on mortality in type 2 diabetes. METHODS: The study included 7,529 participants from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. HRV metrics included standard deviation of all normal-to-normal intervals (SDNN) and root mean square of successive differences between normal-to-normal intervals (rMSSD). Abnormal values were defined based on <25th percentile for HRV and >75th percentile for RHR. Interactions of HRV status and RHR status were tested on multiplicative and additive scales. Results were validated in a subset of patients with type 2 diabetes (n = 745) from the Multi-Ethnic Study of Atherosclerosis. RESULTS: Low SDNN was associated with increased all-cause mortality in the high RHR group (HR 1.60; 95% CI 1.29-1.97), but not in the normal RHR group. Compared with those who had neither low SDNN nor high RHR, the presence of either low SDNN or high RHR was not significantly associated with an increased risk of all-cause mortality. In contrast, the combination of low SDNN and high RHR was associated with a significantly increased risk of all-cause mortality (HR 1.68; 95% CI 1.43-1.97). Significant multiplicative and additive interactions were found between HRV status and RHR status on risk of all-cause mortality (all Pinteraction < 0.05). Similar findings were observed for cardiovascular mortality, in analyses using rMSSD, and in the Multi-Ethnic Study of Atherosclerosis. CONCLUSIONS: The association between HRV and mortality risk is modified by RHR levels. Furthermore, low HRV and high RHR have interdependent and synergistic associations with mortality risk.


Subject(s)
Atherosclerosis , Diabetes Mellitus, Type 2 , Humans , Heart Rate/physiology , Diabetes Mellitus, Type 2/complications , Heart
20.
Heliyon ; 9(12): e23210, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38144268

ABSTRACT

The occurrence of airway obstruction due to severe stenosis from lung cancer poses a significant risk of asphyxia. Although the placement of a metallic stent may relieve the obstruction, the procedure is associated with a high risk of asphyxia. To mitigate this risk, extracorporeal membrane pulmonary oxygenation (ECMO) has been proposed to temporarily substitute for cardiopulmonary function during the procedure. However, the use of systemic anticoagulation with heparin during ECMO may increase the likelihood of bleeding during surgery. This case report describes a successful treatment of a patient with malignant central airway obstruction through low-dose heparin veno-venous ECMO. This approach resulted in reduced intraoperative bleeding and invasive operation time, allowing for prompt postoperative withdrawal and recovery.

SELECTION OF CITATIONS
SEARCH DETAIL
...